
DA102 361 UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO--ETC F/G 9/2
DESIGN SPECIFICATION VALIDATION.(U)
JUN 61 R M BLAZER F30602-79-C-0042

p I Aq TFTFn RADC-TR-61-102 NL; ElllllElllEI
EIIEEEIIIIIEEE
IEIIEIIIIIIII
IIIEEIIIIIIII
IIIIIIIIIIIIII
IIIIIIIIIIIIII
mhIIIIIIIIIIIl

RADC.TR8 -102
Mnul Tecnimi bp@It

Juno 1951

DESIGN SPECIFICATION VALIDATION
Univesity of Southem California

ioberd M. sk1w DP IC
EL E CTE
AUG O 31981

APPRO~b DR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

- ROME Alt DEVELOPMENT CENTER
' Air Force Systems Command

Griffiss Air Force Base, Now York 13441

81 8 02 nfa

This report has been reviewed by the RADC Public Affairs Office (PA) and
Is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-102 has been reviewed and is approved for publication.

APPROVED:

ROCCO F. IUORNO ' 3
Project Engineer

APPROVED:" ,4 <) -, , ',-6C ',--

ALAN R. BARNUM
Assistant Chief
Information Sciences Division

FOR THE CO M N E

JOHN P. HUSS
Acting Chief, Plans Office (

i.

If your addresi has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (ISIE) Griffiss AFB NY 13641. This will assist .us in
maintaining a current mailing list.

Donot return this copy. Retain or destroy.

UNCLASS IFIED
SECURITY C I FIC ATION OF THIS PAGE (97,., De*Entered),

{6~~EA INSTRUCTIONSNVAL

9. PRPORING RN AT~ NACMEANDTADDRES P0ARGRMEEENEPOEC.TS

II.~~~EFR CONTROLLING OFICOAMRNDADRS

A 1.M REP AOOESQ'/ 2i~.. GcOVT Co ESSoI ON o. 3. SECURIET-I CFL (o UMh13ERo~l

YESGN;PE IFCATONVALDA ION L 2IS ep DECASIFCAIO DWNGRADING

SCHDUL

I9. SPEOMENTA IOTS AEADADES 0 RGA LMET RJC.TS

Softwareit desgn Sotwre speifoiatos Softarerequremnts

Snothern Calionia, Infotion Scene I~~be~nenn h es

asRomputr Dvlesin arecurenl tSested.8

Same 7 EIINO INV5ISOSLT UNCLASSII E

SECURITY DCLASSIFICATION D OPG WNGRADI NtGed

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When D.ta Entwrod.

k

UNCLASSIFIED
SECURITY CLASSIFICATION OF T- PAC.E(Who. Data Ent.r.d)

Table of Contents

1. SUMMARY 1-1

2. GIST SPECIFIER'S MANUAL 2-1

2.1 INTRODUCTION Tor 2-1
2.2 TYPES GRAI2.2
2.3 RELATIONS AND ATTRIBUTES TIC TAB 2-4

2.3.1 Attributes i Ounced 2-5
2.3.2 Attributes and Subtypes! 2.7

2.4 CONSTRAINTS 2.7
2.4.1 Use of Constraints 2-10

2.5 DERIVATION RULES 2-11
2.6 OBJECT EXPRESSIONS Di ,'!.--i codes 2-122.6 .Lierl an/r21

2.6.2 Variables apeciO 2-12
2.6.3 Attribute Reference Dist 2-13
2.6.4 Descriptive Reference 2-13
2,6.5 Arithmetic Expressions 2-14

2.7 PREDICATES 2-14
2.7.1 Propositions 2-14
2.7.2 Quantified Predicates 2-16
2.7.3 Predicate Composition 2-17

2.8 ACTION DECLARATIONS 2-17
2.8.1 Primitive Statements 2-20

2.8.1.1 Object Creation 2-20
2.8.1.2 Object Destruction 2-21
2.8.1.3 Adding Relationships and Classifications 2-21
2.8.1.4 Removing Relationships and Classifications 2-22
2.8,1.5 Updating Relationships 2-22

2.8.2 Action Invocation 2-23
2.8.3 Compound Statements 2.23

2.8.3.1 Conditional Behavior 2-23
2.8.3.2 Sequential Behavior 2-24
2.8.3.3 Point Invariants 2-24
2.8.3.4 Alternative Behavior 2.25
2.8.3.5 Preferential Behavior 2-25
2.8,3.6 Non-primitive Granularity 2.26
2.8.3.7 Iterative Behavior 2-26

2.9 ADVANCED TOPICS 2-28
2.9.1 Sets and Sequences 2-28
2.9.2 Multiple Lines of Control 2-28
2.9.3 Temporal Reference 2.28
2.9.4 Boundaries 2-29
2.9.5 Orderings 2-29
2.9.6 Meta Concepts 2.29

3. GENERAL APPROACH TO WRITING GIST SPECIFICATIONS 3-1

3.1 IDENTIFYING TYPES AND SUBTYPES 3-1

- _ _ _ '

3.2 IDENTIFYING INDIVIDUALS 3-2
3.3 IDENTIFYING RELATIONS 3-2
3.4 IDENTIFYING DERIVED CONCEPTS 3-2
3.5 IDENTIFYING STATIC CONSTRAINTS 3-3
3.6 IDENTIFYING ACTiONS 3-3
3.7 IDENTIFYING DYNAMIC CONSTRAINTS 3-4
3.8 IDENTIFYING ACTIVE PARTICIPANTS 3.4
3.9 PROGRESSING IN COMPETENCE 3-4

4. CONSTRUCTING GIST SPECIFICATIONS 4-1

4.1 SOURCE-DATA MAINTENANCE EXAMPLE 4-1
4.1.1 Suppressed details 4-2
4.1.2 Plan for Constructing Source.Data Maintenance Specification 4-4

4.1.2.1 Modeling objects and relationships of domain 4.4
4.1.2.1.1 Notation for types and binary relations 4-5
4.1.2.1.2 Type and attribute definitions for the domain 4.7

4.1.2.2 Static constraints 4-8
4.1.2.2.1 A "static" constraint 4-8
4.1.2.2.2 The use of derivation 4-9

4.1.2.3 Modeling user commands 4-10
4.1.2.4 Modeling change 4-12

4.1.2.4.1 Object boundaries 4-12

4.1.2.4.2 The top-level action to support user-commands 4-13
4.1.2.4.3 A simple action 4-14
4.1.2.4.4 Adjusting process "granularity" 4-15
4.1.2.4.5 Non-determinism and constraints 4-15
4.1.2.4.6 Shifting characters on a line 4-16
4.1.2.4.7 The use of historical reference 4-17
4.1.2.4.8 Historical reference and inserting lines into units 4-18
4.1.2.4.9 Historical reference and backup/restore commands 4-18
4.1.2.4.10 Historical reference and desired behavior 4-19

4.1.2.5 Dynamic constraints 4-21
4.1.2.5.1 A "dynamic" constraint 4-21

4.1.3 Review of specification 4.21
4.1.4 Implications for Gist 4-22
4.1.5 Implications for the source-data maintenance task 4-22
4.1.6 Difficulties of constructing the specification 4-22
4.1.7 Difficulties of understanding specification 4-23
4.1.8 Use of specification 4-23

4.2 HOST-IMP SPECIFICATION 4-24
4.2.1 Overall organization of specification 4-24
4.2.2 General message-passing features 4.24
4.2.3 Specialization to host-imp world 4-25
4.2.4 Implications for Gist 4-27

4.3 TEXT FORMATTER SPECIFICATION 4-27
4.3.1 Source of Problem 4-27
4.3.2 Formatter activities 4-29
4.3.3 Interface 4-30
4.3.4 Organization of specification 4.31
4.3.5 Implications for Gist 4-32

iii

4.3.5.1 New Gist usage 4-32
4.3.5.2 Exposed weaknesses of Gist and dissatisfaction with specification 4-32
4.3.5.3 Advantages accrued from the use of Gist 4.33

4.3.6 Extensions to formatter 4-33
4.3.6.1 Separating justification and filling 4-34
4.3.6.2 Filtering output pages 4-34
4.3.6.3 Forcing text to appear on a single page 4-34
4.3.6.4 Extra space after .,entence 4-34
4.3.6.5 Hyphenation during filling 4-35

4.3.6.6 Conditionals 4-35

5. GIST INITIAL OPERATING CAPABILITY DESCRIPTION 5-1

5.1 INTRODUCTION 5-1

5.1.1 Transliteration 5-3

5.2 Editor, PrettyPrinter, and File I/O 5-3

5.2.1 Commands which Alter Specification Text 5-4

5.2.2 Commands which Change the Editor's Focus 5-5

5.2.3 PrettyPrinting 5-6

5.2.4 Commands for Saving and Restoring Specifications 5-6

5.3 Specification Testing 5-7

5.3.1 The Gist Declaration Compiler 5-7

5.3-2 The Gist Evaluator 5-7

5.3.3 Literal and Created Objects 5.9
5.3.4 Input/Output Facilities 5-9

5.4 Debugging/Testing Aids 5-10
5.4.1 Modifying a Specification 5-11

5.5 IOC Coverage 5-11

6. IOC TRACES 6-1

6.1 IOC TRACE--PSL EXAMPLE 6-1

6.2 IOC TRACE .. CAMELOT EXAMPLE 6-12

7. DESIGN FOR A GIST SPECIFICATION VALIDATION FACILITY 7-1

7.1 OBJECTIVE 7-1

7.2 BACKGROUND 7.1
7.3 APPROACH 7.4

7.4 PLAN 7.5

Appendix I. GIST GRAMMAR 7-7

Appendix I1. GIST SPECIFICATIONS I-1

11.1 SOURCE DATA MAINTENANCE SPECIFICATION 11-1

11.1.1 " Type definitions for objects of domain " g,11.1

I. 1.2 ° Static constraints on the world 11,2

I1.1.3° User commands "°" 11,3

11.1.4 * Dynamic constraints on the world ° 11.5
11.1.5 " ° Interface with user 11.6
11.1.6 * 0 0 Actions to perform commands 11-6

11.1.6.1 " ° SOURCE- DATA.MAINTENANCE*"= 11.6

11.1 .6.2 " UPDATE "" 11.6

11.1.6.3 0& ADD "*° 11.7

L isI II-I------.. . [i I i

U1

IV

11.1.6.4 PURGE " 11-7
11.1.6.5 "*° REPLACE 11-8
11.1.6.6 s COPY-UNIT 11-8
11.1.6.7 CHANGE 11-8
11.1.6.8 INSERT ° 11-9
11.1.6.9 " DELETE "" 11-10
11.1.6.10 " SHIFT * I1-11
11.1.6.11 ° MODIFY 11.11
11.1.6.12*" COPY.LINES 1.13
11.1.6.13" REPLACE.LINE 11-13
I1.1.6.14° COPY-FILE " * 11-13
I1.1.6.15" BACKUP and RESTORE 11-13

1.1.7 * ° " Restoration following temporary changes ° 11.15
I1.1.8 "°" Maintenance of information about units " 1.16

11.2 HOST-IMP SPECIFICATION 11-17
11.3 FORMATTER SPECIFICATION 11-23

11.3.1 Definitions of top level types 11-24
11.3.2 FORMAT (action) 11.26

11.3.2.1 CREATE.- LINELETS.FROM- MIXLETS (action) 11.27
11.3.2.2 PAGINATION (action) 11-28

11.3.2.2.1 PAGE-PARTITION (relation) 11-2S
11.3.2.2.2 CREATE*-PAGE- IMAGE (action) 11-30

11.3.2.2.2.1 PAGE.- NUMBER (relation) 11.31
11.3.2.2.2.1.1 PRECEDING*- PAGE*- NUMBER (relation) 11-31

11.3.2.2.2.2 STRIP,-LEADING AND-TRAILING*-BLANKS (relation) 11.32
11.3.2.2.2.3 LINES-FROM-LINELETS (relation) 11-33
11.3.2.2.2.4 CREATE- TITLE- LINES (action) 11-34

11.3.2.3 PARAGRAPHING (demon) 11.35
11.3.2.3.1 CREATE.JUSITIFIED- INFO*-LINES*-FOR-PARAGRAPH (action) 11.36

11.3.2.3.1.1 CREATE.-JUSTIFIED.-INFO-LINE- FOR+-WORDS (action) 11-37
11.3.2.3.1.1.1 CREATE-JUSTIFIED*-LINE'-FOR.-WORDS (action) 11.38

11.3.2.3.1.1.1.1 ARBITRARILY+ PAD - WORDS.-WITH+ BLANKS 11.39
11.3.2.3.1.1.1.1.1 PAD*- INTERIOR -WITH.- BLANKS (action) 11.40

11.3.2.3.1.2 CREATE.- UNJUSTIFIED- INFO+-LINE-FOR*-WORDS (action) 11.41
11.3.2.3.1.2.1 ARBITRARILY.- PAD.-WORDS- WITH*- BLANKS (action) 11.3_

11.3.2.3.1.2.1.1 PAD- INTERIOR.WITH- BLANKS (action) 11.40

11.3.2.4 SPLIT- OVERLENGTH*- LINES (demon) 11-42
113.2.4.1 CREATE*-SPLIT.- LINES.-FOR.-OVERLENGTH*.-LINE (action) 11.43
11.3.2.4.1.1 SUBSEQUENTIZE.- INFO (action) 11.44

11.3.2.5 LEFT+-MARGIN*.PADDING (demon) 11-45
11.3.2.5.1 EXTEND.- BLANK,- SEQUENCE (action) 11-46

11.3.2.6 CENTERING (demon) 11.47

11.3.2.7 INTER -LINE.- PADDING (demon) 11-48
11.3.2.7.1 EXTEND.- PADDING.- LINE+-SEOUENCE (action) 11-49

11.3.2.7.1.1 SUBSEQUENTIZE.- INFO (action) 11-44 ij

REFERENCES

v

List of Figures

Figure 2.1: Action Declaration in Gist 2.18
Figure 4-1: Structure of source-data maintenance domain 4-2
Figure 4-2: User commands supported by the system 4-3
Figure 4-3: Modeling of objects and relations in Gist 4-5
Figure 5-1: Gist IOC configuration 5-2

List of Tables

Table 5-1: IOC symbol transliteration 5-3

I i
.1

1-1

1. SUMMARY

This report documents our findings concerning the feasibility of validating formal software

specifications. This one-year effort attempted to show that with a suitable formal software

specification language, specifications could be validated much as implementations are currently

validated, through applic:nion of testing methodology.

This approach necessitated an "executable" formal specification language so that test cases could

*be "run" on the specification itself. Such a language was already under development within

USC/Information Sciences Institute. Our first task was to document this language (see Chapter 2)

and our approach to using it to write formal specifications (see Chapter 3). We then applied it to three

real, moderate-sized systems (see Chapter 4) to ensure that it was suitable for military applications.

These experiments were highly successful in that we were able to formally specify the functional

behavior of these three systems.

The next major task of this effort was to demonstrate that specifications in this formal language

could be validated by running them on test data. Towards this end, we built a prototype interactive

testing facility called the Initial Operating Capability (IOC).. It consists of an evaluator capable of

executing specifications expressed in a subset of the formal specification language, and an executive

for entering, editing, and displaying specifications, for initializing the state within which one is

evaluated, for displaying states, and for tracing and breakpointing the evaluation interactively in a

DDT.like manner. The IOC is described in Chapter 5 and examples of its use are given in Chapter 6.

The final task in this effort was to design a capability for testing a specification on a whole class of

cases simultaneously, rather than one at a time, through symbolic execution, This design is

documented in Chapter 7 of this report. It is based on extending the evaluator to handle symbolic data

as well as concrete data. so that as evaluation proceeds, predicates describing incompletely defined

data (i.e., the symbolic data) are automatically constructed dynamically, and wherever

incompleteness of the data prevents determination of which control path to follow, all possible control

paths are explored, each conditioned by the predicate necessary to select it.

Thus, there is tradeoff between breadth of test cases covered and complexity of the symbolic

evaluation. For this reason. the design allows the person validating the specification to interactively

determine which data should be concrete versus symbolic, and hence, dynamically define the class of

test cases being explored.

i.

1.2 SUMMARY

The following observations and conclusions emerged from this study:

1. While functionally complete, the formal specifications omitted some aspects of the actual
systems.

These omissions were intentional. We have tried to prevent implementation details from
intruding into the formal specification. For that reason data representations are not part
of our specification language. This prevents us from describing some (possibly required)
aspects of the specified system, most noticeably their I/O interfaces. We believe these
(required) representatives should be documented .as part of the chosen (required)
implementation of the system, rather than as part of its specification.

2. Existing specifications incorporate implementation details.

In order to get a good system description for which we could build a formal specification,
we had to de-compile the existing description so that it only described the functionality
desired, rather than an implementation of it. As current or former programmers, we are all
overly sensitized to efficiency issues and tend to describe a system in terms of a feasible
(or possibly preferred) implementation. Representation issues are one example;
algorithm choices are another.

3. Formal specifications are unreadable.

This is unfortunately true for our language as well as all others. The reason is that the
mechanisms used in informal communications to aid understanding--such as overview,
summaries, examples, elborations, alternative viewpoints, role descriptions (why
something is important)--are totally missing. Basically, no roadmap is provided to help
someone read the specification. Until these issues are addressed, formal specifications
will only be understandable when accompanied by an informal natural language
description.

4. The formal specification language is not interpretable.

The reason is that the formal specification language is highly context dependent and this
context is affected by many remote statements such as type declarations, constraints,
demons, inference rules, action definitions, and individual uses of historical reference.
All these statements must be located, collected, and "translated" before interpretation
can begin. Thus, the evaluator consists of a compiler which performs these tasks and an
interpreter which uses these compiled forms.

5. The evaluator must be interactive.

The formal specification language is highly non.deterministic and the non-determinism
interacts with the specified constraints so that only those choices which don't violate

constraints either now or in the future are selected. Operationally, the evaluator can only
discover the appropriate choices by trying them and rejecting those that violate
constraints anywhere during the evaluation. This leads to a classical backtracking
search. To control the size and depth of this search space during evaluation, the person
using the IOC can supply an appropriate choice rather than have the evaluator search for
one.

2-1

2 GIST SPECIFIER'S MANUAL

2.1 INTRODUCTION

A Gist specification is a formal description of valid behaviors of a system. This description is

composed of three parts:

A specification of object types and relations betweenthese types. This determines a set
of possible states. A possible state consists of a collection of objects, each of which is
classified as an instance of one or more of the specified types. The objects in a possible
state may be related by the specified relations.

" A specification of actions and demons, which define transitions between possible states.

- A specification of constraints on states and state transitions. The valid behaviors of a
system are those defined transition sequences that do not violate any constraints.

This document provides a tutorial introduction to Gist. The concepts and syntax of Gist are

presented in the context of describing the behavior of an imaginary system of ships moving cargos

among various ports.

A second goal of this introduction is to provide some insight into our conception of "good taste" in

writing Gist specifications. In Gist. as in programming languages, there are often several ways to

specify the same behavior (functionality). In programming languages, one must make tradeoffs

among understandability of code, modifiability, and efficiency. In Gist, efficiency is not an issue; there

is no sense in which two specifications of the same behavior differ in efficiency. The main goal of the

specifier is to maximize his confidence that he has specified the intended behavior. But important

secondary goals are to make a specification understandable to people other than its creator, and to

make it maintainable. The rules of thumb and good practices described are aimed at these latter

goals.

As with any language, the use of common conventions can itself improve communication between

people. But the specifier should always remember that his overriding concern is to be confident that

he is spezifying the behavior intended.

While a primary purpose of writing a specification is to use it in the process of implementing

computer software, there are no software concepts within Gist. In particular, all behavior is specified

without the use of the concepts of input/output or the information representations available on any

particular machine or in any particular programming language(s).

IL

2-2 GIST SPECIFIER'S MANUAL

2.2 TYPES

The first task of a specifier is to decide on a collection of object types that will capture the important

objects, or values, that the process manipulates. Since there is usually some verbal description of the

process available, a good rule of thumb is to consider common nouns (particularly concrete nouns)

as the names for object types.

Following this rule, even the cursory description of our example domain given earlier suggests the

use of ship, cargo, and port as object types.

The names to be used for object types in Gist must appear in type declarations. The simplest form

of a type declaration gives nothing but the name:

type ship;
b= port;
type cargo;

Gist has only a few predefined types. Among these are number,' integer, natnum (natural

numbers), and character. These types may be used in a specification without declaration.

Sometimes one of these types is appropriate, but the specification would be more natural if a different

name were used. This can be done by defining a new type name in terms of an existing one:

t= tonnage definition natnum

The previous line defines the type name "tonnage" as isomorphic to the type "natnum".

The only reason to use the predefined types, however, is to use some capability that is already

defined for them. The numerical types, for example, provide access to arithmetic operations,

comparisons, and the ability to include numerical constants in the specification.

It is a bad practice to specify types to be synonyms for numbers because one anticipates the use of

numbers as a representation in some implementation.

An enormous gain in expressiveness is obtained by specifying supertype relationships among

types. If all objects of one class also belong to a second class, the larger class should be declared to

be a supertype of the smaller class:

Number corresponds to the REALs. It should not be thought of as specifying "floating point" representation on a
computer.

TYPES 2-3

te cargo unigue suoertyoe gf
< grain;

fuel

This declaration states that every instance of cargo is an instance of either grain or fuel, but not both.

In other situations, the named subtypes may not e,,aust the supertype:

b= ship ptional Suer of
< oiltanker;

cruiseship
)

The word ontional indicates that a ship may be either an oiltanker or a cruiseship (although not both),

but may be neither.2

Although the verbal names used for types often give no clue to supertype connections, as with the

names "ship" and "oiltanker", certain patterns should be considered. Noun pairs, such as "cruise

ship", are frequently used to name subtypes of the second noun, as are compound nouns. Adjectives

frequently are used with nouns in the same way, as in "military vessel".

In order to fully describe a process, it is sometimes necessary to refer to individual objects (values)

as well as to entire classes. The names of individuals may be freely chosen by the specifier, but the

type to which each belongs must be declared. This can be done as part of the type declaration:

ty.e port icue {SantaBarbara, Seattle);
y= grain definition (Corn, Wheat);
b= fuel definition (Oil, NaturalGas)

The declaration can either enumerate some of the instances of the types (includesl or may

enumerate them all (definition).

Linguistic clues that indicate the need for declaring individual instances of types include the use of

proper nouns, mass nouns, and collections of adjectives (like color names) used to modify the same

type names.

The primary motive for declaring various types of objects in a specification is that the instances of a

type are perceived to share characteristics not common to instances of other types. These include:

2 Gist also permits declarations of "overlapping" subtypes, and types with multiple supertypes,

2.4 GIST SPECIFIER'S MANUAL

e relationships that hold between the objects

& actions that may be performed on the objects

9 constraints on the objects

The remainder of the declaration portion of Gist is concerned with specifying these regularities.

2.3 RELATIONS AND ATTRIBUTES

In describing a process in English, we use specific words and syntax to describe the ways objects

are related to one another. In "ship bound for SantaBarbara" the phrase "bound for" indicates a

particular relation that can hold between ships and ports.-namely, a ship can be scheduled to go to a

particular port. "A ship based in SantaBarbara" uses a different phrase, "based in" to talk about a

different relation between the same two types. "A ship containing 50 tons of wheat" indicates yet

another relation in this domain--ships may contain specific quantities of specific cargos.

In Gist, tKese various kinds of associations that may relate the individual instances of the types are

called relations. A relation is declared by giving it a name and by naming the object types it relates:

relation CONTAINS (SHIP, CARGO, TONNAGE) (2.1)

This does not specify which instances of ship, cargo, and volume are related or when such

relationships arise. But it does say that the relation name CONTAINS will not be used to relate

objects of any types other than the three named.

If in a given state the ship USS-Prairie contained 50 tons of Wheat, we would say in Gist

terminology, that there was a relationship in CONTAINS having USS-Prairie filling the SHIP role,

Wheat filling the CARGO role, and 50 filling the TONNAGE role.

Technically, each role of a relation has both a name and a type. In many cases, the specifier will

feel comfortable using the same name for the role as was used for its type. This is done by using only

the type name in the declaration, as in (2.1) above. In other cases, there is mnemonic value in

choosing a name for the role that is more expressive than the type name. Finally. there are constructs

in Gist that use the role name explicitly. For relations that have more than one role of the same type,

these constructs are useable only if those roles have been given distinct names. Since it is a bad idea

to try to anticipate which roles one may need to reference by name in a specification, one should

always choose distinct names for two roles of the same type in the same relation.

There are two ways to indicate a name for a role of a relation when it is to differ from the type name.

J

RELATIONS AND ATTRIBUTES 2-5

One is to choose as the role-name a composite name of the form "typename.dstinguisher'....g.,

"COUNTRY.FROM". In this case, the composite name is the role name while its prefix (in this case,
"country") is the role type. Alternatively, one can choose an arbitrary name for the role and specify

its type explicitly, separating the two names by a "I" in the declaration. Suppose we wanted to have a

relation that indicated what goods were being traded among nations. We could do this with a relation

declared by:

relatio TRADE (COUNTRY.FROM, GOODS I cargo, COUNTRY.TO)

making TRADE a ternary relation having roles named COUNTRY.FROM, GOODS, and COUNTRY.TO,

whose types are country, cargo, and country, respectively.*

In general, one can imagine countless relationships in any moderately rich process domain. It is

not possible to determine in advance precisely which ones will be sufficient, or convenient, to use for

the entire specification. A good rule of thumb, however., is to start with those mentioned in the verbal

process description. Linguistic clues to relationships include:

" the use of "situational" verbs like "contain" or "own",

" the use of passive forms like "be connected to" or "be bound for",

- noun phrases modified by prepositional phrases, like "the berth of a ship" or "the salary
of an officer",

" possessive forms, like "the ship's country of registry", or "the officer's salary".

2.3.1 Attributes

It is usually the case that a large percentage of the useful relations in a specification will be binary

relations. These can be declared and used like ordinary N-ary relations, but may also be declared and

used in a special attribute notation in Gist. The use of attribute notation makes the declaration of the

rel tionship. its use, and the specification of constraints on it more concise and, arguably, easier to

understand.

Attributes are declared as part of type declarations. For example. to declare the binary relationship

between ships and their country of registry, the attribute is named in the declaration of one of the

types:

LMe ship (REGISTRY I country);

This declaration indicates that ships and countries are related by an attribute named REGISTRY.

Elsewhere in Gist. ": REGISTRY" is used to designate the mapping for ships to countries, and

REGISTRY" to designate the inverse mapping from countries to ships.

2-6 GIST SPECIFIER'S MANUAL

Many attributes may be declared in a single type declaration. The declaration:

h=~ ship (REGISTRY I count ry, CAPACITY I tonnage, DEADWEIGHT I tonnage) (2.2)

specifies the existence of three mappings, whose names are intended to convey the meaning of the

mappings.

The declaration of relationships, including attributes, should be mude for the most general

applicable types. It is then "inherited" by the subtypes of those types. For example, having declared

the attribute "REGISTRY" between ships and countries, therd is no need to duplicate the declaration

for subtypes of ship, such as oiltanker, or for subtypes of country.

Having decided to use an attribute declaration as opposed to a binary relation, a specifier still must
3.4decide in which of the two relevant type declarations to include the declaration of the attribute. It

is impossible to do more than give guidelines on this matter, since there is no formal distinction in the

declaration content. As is frequently the case with guidelines they may suggest conflicting

organizations.

Linguistic guideline. Choose an attribute name that makes the phrase:

<attribute name) of/in/for/ <type>1 must be <type>2

sound like a sensible description of the relationship- Declare the attribute within the
declaration of type1 . Each attribute in (2.2) above would be suggested by this rule, since:

registry of ship must be country
capacity of ship must be tonnage

deadweight of ship must be tonnage

sound right.

*Functionality guideline. If the mapping is many-to-one--each object of type1 maps to
exactly one object of type2 , but an object of type2 may map to zero, one, or more objects
of typel-.then declare the attribute with the declaration of type1 . All three attributes in
(2.2) suggest this.5

Structural guideline. Some relationships have a "part.whole" feeling to the specifier.
Sometimes this has a strong physical basis in the real world, as with the slips of a pier.
Other times the feeling is more one of a logical dependency specific to the process under
consideration, as with the dependents of an employee. Try to declare such attributes as
part of the declaration of the "whole" type.

3It could be redundantly stated in both places, but this would not be a good idea in general, since any change to the

declaration would require two changes in the specification to maintain consistency.

401 course, I the two types are the same, there is no problem,

5 Certain default constraints on the mappings, described later, are designed to mesh well with this guldeline.

IU

RELATIONS AND ATTRIBUTES 2-7

It is possible, by means described in Section 2.4, to specify constraints on attribute mappings along

with the attribute declaration itself. -Sometimes the restriction of the mapping that involves a named

subtype of one of the two types is more highly constrained than the mapping as a whole. For

instance, crewmember's salaries may range from $10,000 to $40,000, but officer's salaries may have

to be above $25,000. When this situation arises, more effective use can be made of Gist's constructs

if the attribute is declared with the type whose subtype is further constrained- crewmember, in this

example.

'2.3.2 Attributes and Subtypes

Whenever a proposed attribute relationship involves a type whose instances are totally enumerated

by literals in the specification, the specifier should consider the possibility that a more natural and

useful specification could be obtained by using the supertype concept. In other words, the attribute

relationship between type A and enumerated typeB can be replaced by having a named subtype of

typeA for each instance of type., and eliminating type, entirely. A particularly common situation to be

aware of is the use of "flag" types whose instances are "yes" and "no", or "true" and "false", or 0

and 1. It is almost always preferable to provide a name for each case and make the encompassing

type a "unique suonerty f" these named types, or to name one of the cases (typically, the
'positive" one) and make the encompassing type an "ionl suoert 2f" that named type.

For example, it would be preferable to specify the fact that some ships are government-owr -d as:
b=p ship(...) opioa suoertvoe of

(governmentship (..)>;

rather than:

t= ship(....,GOVERNMENTOWNED J {YesNo))

2.4 CONSTRAINTS

The declaration of types and relationships lays out a wide variety of possible process states--that is,

states containing collections of instances of those types and relationships between objects of

appropriate types. However, it is nearly always obvious that many of these states may never really

arise. Sometimes this is because of physical constraints in the process domain--e.g., a ship cannot

simultaneously occupy multiple slips, nor can multiple ships simultaneously occupy one slip. In other

cases, it is not physical reality, but the desired process which restricts the potential states. For

example, there may be a "rule" which states that no ship should simultaneously carry fuel and grain.

In either case, Gist provides declarations for specifying such constraints on possible states.

'4

2-8 GIST SPECIFIER'S MANUAL

The most general construct permits the specifier to state that a given condition must either:

" hold in every process state (a requirement)

" hold in no process state (a prohibition).

The constraining condition is specified by a Gist predicate. Predicates are discussed in more detail in

Section 2.7, but basically follow conventional predicate calcutus notation. For example,

always rohibited 3 ship,fuel,grain 11 CONTAINS(ship, fuel, $) A
CONTAINS(ship, grain, $)

would state that no ship may ever be used to simultaneously transport fuel and grain.

always reguired V oiltanker II 3 officer II officer : ASSIGNMENT = oiltanker A
officer : SENIORITY > 10

would require that officer assignments ensure that every oiltanker have at least one officer with over

10 years experience.

Although it is possible to describe all Gist's constraints in this way, experience shows that many

constraints can be naturally expressed as constraints "on" particular relations or types. For such

con3traints Gist provides a means of expressing the constraint as part of the type or relation

declaration.

With respect to a given relation, there are two classes of constraints which may be specified. The

first concerns constraints on individual relationships in the relation. For instance, to prohibit trade of

any product between two countries which are both producers of that product, one could place a

constraint on the TRADE relation in terms of a PRODUCES relation:

relation PRODUCES (COUNTRY, GOODS I cargo);
relation TRADE (COUNTRY.FROM, GOODS I cargo, COUNTRY.TO)

where always oflhjbt PRODUCES(country.from, goods) A
PRODUCES(country.to. goods)

The second form of relation.specific constraint restricts the collection of relationships which may

co-exist in a given relation. For any partitioning of the roles of a relation into two non.empty

partitions, one may view the relation as a mapping from one partition to the other. It is possible to

constrain the "multiplicity" of such a mapping. For example, the relation CONTAINS implicitly

provides a mapping from ship.cargo pairs to tonnages. For a given ship-cargo pair, there can be at

most one tonnage (the amount of that cargo or that ship). But for a given tonnage, there is no

restriction on the number of ship-cargo pairs which CONTAINS relates to it. This can be expressed

by augmenting the declaration of CONTAINS:

CONSTRAINTS 2-9

relaion CONTAINS (SHIP, CARGO, TONNAGE)

any (SHIP, CARGO) gjtonj

The pair (SHIP,CARGO) defines the role partitioning. The other partition is implicitly (TONNAGE). The

word any preceding the explicit partition indicates no constraint on the mapping from (TONNAGE) to

(SHIP,CARGO). The word opional indicates that a given (SHIP,CARGO) pair may map to zero or one

(TONNAGE). This constraint could also have been written

opional (TONNAGE) any

The ways to specify the multiplicity of a mapping include:

indicator multiolicitV

any no restriction
otional 0 or 1
unie exactly 1
multiple 1 or more
any integer N exactly N

When attributes are used to specify binary relationships, it is still possible to state both forms of

constraint Within the type declaration which introduces the attribute. The "mapping multiplicity"

constraints are indicated by placing multiplicity indicators before and after the attribute specification.

For example:

b= ship (unicue REGISTRY I country) (2.3)

constrains the relationship between ships and their country of registry so that each ship must have

exactly one country of registry, but a given country may have zero or more ships registered in it.

If no multiplicity indicator is given in a declaration the default is "unioue" for the mapping from

declaration type to attribute type, and "any" for attribute type to declaration type. Thus example (2.3)

could be written simply as:

t =e ship (REGISTRY I country, ...)

defaulting both multiplicity constraints.

Constraints on individual relationships in an attribute relation can also be declared within the type

declaration in which the attribute is declared. In fact, it is possible to constrain combinations of

different attributes of a given type, as illustrated in the following examples:

tyoe draft definition natnum
type port (MAXDRAFT I draft, COUNTRY Multiple

1=e ship (..., DRAFT.SHIP, 8lV PORTOFCALL I port, PORT.HOME)
where always prohibi draft.ship > portofcall : MAXDRAFT (2.4)
And

would prohibit a ship from having a port of call for which the ship was too large.

2-10 GIST SPECIFIER'S MANUAL

In addition, one could require that a ship be capable of entering its home port by including in the

ship declaration

always reuire draft.ship < port.home: MAXDRAFT

A type constraint of the form "always orohibi condition" declares that the condition may never hold

for any instance of the type in whose declaration the constraint appears. The condition refers to the

object being constrained by using the type name as a variable. It may also refer to the objects in

attribute relationships with that object by the attribute names used in the declaration. The condition

holds, and thus violates the constraint, if any combination of attribute values satisfy it. Thus

constraint ((2.4)) prohibits a ship from having any port of call which is inappropriate regardless of how

many acceptable ports of call it may have at the same time.

Analogously, an "always require condition" constraint on a type requires the condition to hold for

every instance of the type, for all combinations of attribute values. In all cases, "always reuire

condition" and "always prohibit condition" are equivalent. As with other predicates, it is generally

easier to read a constraint in a form which reduces the use of the logical operator 1.

2.4.1 Use of Constraints

There are two primary purposes for constraints in Gist specifications. The first is as an aid to

someone trying to understand or implement a (portion of) a specification. Understanding and

implementation both involve a great deal of mental simulation of behavior. This in turn requires

consideration of how behavior will proceed under various conditions. Constraints are a powerful

means of limiting the range of conditions which must be considered.

The second use of constraints is to aid the specification writer. Consider two ways people use what

we might term "constraints" in English--e.g, "Don't let your bank balance be negative."

" This might be treated as a rule to do something (although what to do is not stated)
whenever the balance drops below 0 to rectify the situation. In programming terms, use
of a constraint does not say that the condition always holds, but that when it doesn't hold,
some form of "interrupt" process is used to re-establish it. Gist's semantics does not
treat constraints in this way.

" Another use people make of constraints is to limit choices. The bank balance constraint
will limit a person's selection when buying a stereo, for example. This is Gist's semantics
for constraints- -that choices are always to be made so that no constraint will ever be
violated. This implies that choices are limited not only by their immediate affects, but by
their "downstream" consequences as well. This is analogous to a person realizing that
he can't buy a stereo, not because his bank balance would go negative when he brought
it, but because it would go negative when he paid the rent two days later (a behavior for
which he has no alternative):

CONSTRAINTS 2-11

It is often easier to specify behavior by allowing the procedural part of the specification to contain too

many behaviors and letting constraints prune the alternatives.

In choosing what constraints are worth stating explicitly, a verbal process description is of limited

use. Some constraints may be expressed verbally, but many are such "common knowledge" that

they are left unstatad--"two ships can't be in the same slip", "a ship may not be loaded above its

capacity". A spedifier can state any obvious constraints which come to mind before working on the

procedural portion of his specification. But he should be on the lookout for situations where he is

writing procedural specification for the purpose of "avoiding" a problem. An example of the way

constraints can collaborate to simplify the procedural part of a specification is presented in section

2.8.

2.5 DERIVATION RULES

Derivation rules are provided in Gist to permit the specifier to expand his vocabulary to include

concepts which can be defined in terms of other concepts, without having to treat the concepts as

though they were independent and maintain their equivalence procedurally. We might say "a ship is

docked at a pier if and only if it is berthed in some slip of that pier" to define the concept of "docked

at" in terms of "berthed in" and the relationship between slips and piers.

Gist permits derivation rules for types and relations (including attribute relations). To define a new

derived relation, the Gist specification should include a normal declaration of the relation, together

with a predicate stating the conditions under which the relation holds:

rftign TRADE-PARTNERS (COUNTRY.1, COUNTRY.2)
definition TRADE (country. 1, S. country.2) A

TRADE (country.2, $. country. 1)

would define a binary relation TRADE-PARTNERS which would hold between two countries if and

only if countries had mutual TRADE relationships (regardless of the goods involved).

Derived concepts in Gist may be used in all ways like non-derived concepts (including their use in

the deriveration of other concepts) save one: the derived relation may not be used as a primitive state

change statement (see section 2.8.1).

A derived attribute is specified by including a normal declaration for it and a derivation for it as well.

tvo ship (..., optionQl BERTH I slip optional,
optionl DOCK I pier derivation ship : berth': ATPIER

This defines the "DOCK" attribute to relate a ship to a pier it and only if the ship is in a slip at that pier.

2-12 GIST SPECIFIER'S MANUAL

Finally, one can give a definition for a type name, where the definition is a predicate, written in

terms of the type name, which, if satisfied by some object, qualifies that object as an instance of the

type.

=g~e port ...)otional suert of
<oilport definition 3 pier 11 pier: PORT = oilport A

pier : HANDLES = Oil
)

Under this declaration, a port is an oilport if and only if it has a pier which handles oil.6

2.6 OBJECT EXPRESSIONS

The object expression is Gist's means of referring to particular objects, or values, within predicates

and statements. The referent(s) of an object expression is determined by the process state in which

the expression is evaluated and the referents of any variables used freely within the expression. An

object expression may refer to a single object, in which case it is said to make a deterministic

reference. It may refer to multiple objects, in which case it is said to make an ambiguous reference. It

is also possible for an object expression to have no referent at all, in which case it is said to make an

anomalous reference.

2.6.1 Literals

The simplest object expression in Gist is a literal. Distinct literals refer to distinct objects, and all

occurrences of a given literal refer to the same object. Both numeric literals (5000) and non-numeric
literals (Corn) are allowed. Non-numeric literals must consist of single identifiers, and those

identifiers should not be used as the names of relations, actions, types, or variables elsewhere in a

specification.

2.6.2 Variables

Variable names in Gist are arbitrary identifiers. Each variable name has a type which restricts the

potential referents of the variable. The type may be implicit in the variable's name, or may be declared

explicitly. To have an implicitly typed variable, it is only necessary to choose its name in the same way

as names are chosen for implicitly typed attributes--e.g., "port.old" could be used as the name for a

variable with implicit type "port". Variables obtain their referents in two ways:

A type which is declared to be a unique supertype of some collection of types may not also have a definition; the unique
Ofsrlxna g in fact constitutes a definition of the suoertype.

OBJECT EXPRESSIONS 2-13

" A variable can be used as a formal parameter of an action. It then obtains a referent
object from an actual parameter in an invocation of the action, and can be used to refer
to that object within the action's defining statement.

"Quantified variables can be used in predicates as they are in predicate calculus. These
variables obtain as referents objects which satisfy the predicate. In many uses of
predicates, these variable names can then be used later to refer to those objects.

2.6.3 Attribute Reference

Through the use of attribute names it is possible to refer to the objects related to a given object in

an attribute relationship. Such an expression may be an anomalous, deterministic, or non-

deterministic reference.

ship. 1 : CAPACITY

would refer to the tonnage which is the capacity of. the ship referred to by the variable "ship. 7
": attribute" maps objects of the type in which the attribute was declared (in this case, "ship") to

objects of the type specified for the attribute (in this case, "tonnage").

USA " REGISTRY

would refer to any ship whose country of registry was the USA. ":: attribute" performs the inverse

mapping fror ": attribute".

2.6.4 Descriptive Reference

A descriptive reference is a reference to an object obtained by specifying its type and, optionally, a

predicate which must be true of it. Any object of the indicated type for which the predicate holds is

then a referent of the expression. The expression

ac I country II TRADE(c,OiIUSA)

would have as its referent any country which traded oil to the USA. In this expression, c I country

indicates that the type of object being referred to is "country", while "c" is an identifier used to refer

to the desired object in the predicate which follows the symbol "11". This expression could also be

written as:

a country II TRADE(country,Oil,USA)

An expression which refers to any instance of a type is written by omitting the predicate:

a country

*

2-14 GIST SPECIFIER'S MANUAL

2.6.5 Arithmetic Expressions

Expressions whose referents are arithmetic values may be combined using the arithmetic operators

, and \ to compute other arithmetic values, as is done in algebraic programming languages.

Furthermore, the monadic operator "count" may be applied to any expression to obtain the number

of referents which that expression has. For instance,

count(Seat.: :: PORT.MOME)

is an arithmetic expression whose value is the number of ships having Seattle as their home port. If

the operand of "count" is anomalous, then the value of the "count" expression is zero.7

Parentheses may be used to enclose subexpressions both for readability and to override the default

groupings imposed by Gist's syntax.

2.7 PREDICATES

A predicate is the means by which conditionality is introduced into a specification. There are a

number of basic pieces of information in a process state which can be used as the basis of tests:

- the existence of objects

- the classification of objects by type

- the relationships between objects

Like predicate calculus, Gist permits the expression of complex predicates through the use of

quantified variables and logical combinations of predicates involving those variables and literals.

Semantically, a predicate may be said to be either TRUE or FALSE relative to a particular process

state and particular assignment of referents to its variables. In the following descriptions, where no

confusion will arise, we will simply refer to predicates as TRUE or FALSE.

2.7.1 Propositions

All predicates are built up from propositions. One form of proposition is a test for the existence of

an object. Since objects may be created and later destroyed (see section 2.8.1) it is possible to have

an expression (e.g., a variable) whose referent is an object which has been destroyed. The monadic

predicate "extant" is used to test for the existence of the referent of an expression.

7Although using coFunt" to test whether the number of referents of an expression is zero does in effect test whether it is
anomalous, the predicate "extant" (see section 2.7) is the stylistically preferred way of doing this.

PREDICATES 2-15

extant ship. 1

is a proposition which is TRUE if and only if the referent of the variable "ship. I" exists in the state in

which the proposition is evaluated. Since a proposition using "extant" is FALSE if the operand of
"extant" is anomalous, it is also useful for testing whether an expression has any referents.

Anoter basic proposition is a test for referential identity of two expressions. Any two object

expressions may be compared with the logical operator "= ". The proposition is TRUE if and only if

the two expressions have at least one referent in common. If either or both expressions is anomalous.

or they have disjoint sets of referents, the proposition is FALSE.

ship. 1 : PORTOFCALL = ship.2 : PORTMOME

would be TRUE if the referent of "ship. 7" had the home port of the referent of "ship.2" as one of its

ports of call.

It is also possible to test for non-identity of two expressions. using the logical operator " ". The

proposition is TRUE if the two object expressions have non-empty sets of referents which are not

identical. If either or both expressions is anomalous, the proposition is FALSE.

Ship. 7 : PORTOFCALL # ship.2 : PORTHOME

would be true if the referent of "ship. 1" had any port of call other than the home port of the referent of

"ship.2."

Another form of proposition is a test for the classification of an object.

Seattle :: PORT.MOME j oiltanker

would be true if any ship having Seattle as home port was classified as an oiltanker.

Arithmetic expressions may be compared using the comparison operators <. <, >, >, and, of

course. the identity comparison

The final form of proposition introduced in this section is a test for the existence of a named

relationship between objects. The relation must be specified by name, and the objects being tested

are specified by object expressions. A relationship is TRUE if any combination of referents of the

object expressions fill the corresponding roles of any relationship in the named relation. If the named

relation is n-ary. exactly n object expressions must appear in the relationship test. The

correspondence between the object expressions in the proposition and the roles of the relation is

positional.

CONTAINS(Seattle :: PORTHOME, a grain, a tonnage I tonnage > 5000) (2.5)

is a proposition which is true if there is any relationship in CONTAINS involving a ship whose home

2-16 GIST SPECIFIER'S MANUAL

port is Seattle, a cargo which is an instance of "grain", and a tonnage which is greater than 5000.

Note the positional correspondence between the three object expressions in ((2.5)) and the roles in

the declaration of CONTAINS in example ((2.1)).

An abbreviation which is frequently useful in propositions, and particularly in relationship tests, is

the use of the symbol "$" as an object expression. It may be thought of as having all existing objects

as i+s referents, and thus serves as a test of whether any existing object satisfies the predicate in

which it is used. For instance,

CONTAINS(Seattle :: PORT.HOME, a grain, $)

is a proposition whigh is TRUE if any ship having Seattle as its home port contains any amount of a

cargo which is an instance of "grain". It should be noted that, for each of the propositional forms, the

proposition is TRUE if any referent(s) of the expression(s) used as operands have the property being

tested, or bear the tested relation to one another. In all cases, the propositions have the semantics

normally associated with them in programming languages when all expressions involved are

deterministic.

2.7.2 Quantified Predicates

Predicates may make use of existentially and universally quantified typed variables. These

variables appear freely within the scope of the quantifier. A predicate 0 of the form:

3 v1lt 1....vnlt n 11 P

is TRUE if and only if there exist objects 01,... O n, where Oi is an instance of tV, such that P is TRUE

when free occurrences of vi in P are taken to refer to Oi. Furthermore, 0 is said to be TRUE subject to

the assignment of O i to vV Otherwise, 0 is FALSE. For example.

3 c j cruiseship 11 c : REGISTRY = USA (2.6)

would be TRUE if any instances of "cruiseship" had USA as their country of registry.

Analogously, a predicate 0 of the form:

V v1t1 -,...vnltn II P

is FALSE if and only if there exist objects 01, ... On , where O i is an instance of t i, such that P is FALSE

when free occurrences of v. in P are taken to refer to 0. Furthermore. Q is said to be FALSE subject

to the assignment of 0 i to vi. Otherwise, 0 is TRUE. For example,

V o I oiltanker II o: PORTOFCALL: COUNTRY = USA

would be TRUE if every instance of "oiltanker" had some port of call in the USA. (It would also be

TRUE, by definition, if there were no instances of the type "oiltanker".)

PREDICATES 2.17

Quantified variables may, like role names, be named so that the variables type is implicit in its name.

Example ((2.6)) could be written as:

3 cruiseship II cruiseship: REGISTRY = USA

2.7.3 Predicate Composition

Predicates may be combined with the unary prefix 1 and the boolean infix operators A, V,

19 (exclusive or), =: (implies), and =_ (equivalent) to form lo'gical compounds. The precedence for

parsing logical compounds is the standard precedence of propositional logic. Parentheses may be

used for legibility and for groupings other than that given by the default precedence. The semantics

of logical compounds is defined by the standard truth tables.

2.8 ACTION DECLARATIONS

Any application domain will have a variety of activities carried out by processes in that domain.

These activities change the state of the process in some way. They may create or destroy domain

objects (launchi~ng or decomissioning a ship). change object relationships (giving a ship an additional

port of call), or classify or declassify objects (making a crewmember an officer). Furthermore, the

execution of an action serves to "mark time" in the process, in the sense that Gist's facility for

temporal reference permits reference to past execution states in terms of the start, completion, and

duration of events (action executions). Thus an action which makes no changes to domain objects

may still be a useful modelling concept.

The effect of an action on the process state depends on the state in which it is invoked and on the

perameters used in the ir:. ocation. These parameters serve two purposes in Gist:

- As in conventional programming languages. the parameterization of a definition permits
users of the definition to specialize it to suit their needs. In the case of an action, the
user. or invoker, of the action can control its effects by specifying particular values
(actual parameters) for the roles (formal parameters) of the action.

- Reference to events in Gist's temporal reference expressions is done through a
combination of action names and parameter "descriptions". This permits a much finer
filter on event reference than would reference by name alone.

An action declaration consists of a name for the action and a list of names (and types) for each

formal parameter, or role, of the action. It also may contain a definition, and pre- and postconditions

for the action. Figure 2-1 illustrates the declaration of actions.

2-18 GIST SPECIFIER'S MANUAL

MOVESHIP[SHIP,PIER]

orecondition INPORT(ship,pier: PIERLOC),

definition

if Ship: DOCK = pier

then 0,mment no movement needed & comment

ej Update BERTH 2f ship t2 a slip

Dostcondition ship : DOCK = pier;

action

LOA DSHI P[SHIP,CARGO,INCR :tonnage]

precondition ship : DOCK : HANDLES = cargo,

definition

if CONTAINS(ship,cargo,$)

then update TONNAGE Pf CONTAINS(ship,cargo,$)

Xtonnage + incr

Linser CONTAINS(ship,cargo,incr);

~action

ASS IGN- CA RGO [CARGO,TONNAGE,PORT.FROM,PORT.TO]

definition

reguirg 3ship 11 ship : PORTOFCALL = port.to;

MOVESHIP[ship,a pier 11 pier: PIERLOC = port.from];

LOA DSHI P[ship,cargo,ronnage]

end

Figure 2-1: Action Declaration in Gist

ACTION DECLARATIONS 2-19

The body of an action definition is constructed from the primitive statements of Gist and forms for

combining them into complex process descriptions. The first action declaration defines an action

named MOVESHIP. The action has two parameters, of types "ship" and "pier".8 This action is

intended to represent the activity of relocating a ship at a given pier in a port. The definition is a

simple conditional. If the ship is already docked at the indicated pier, nothing happens; otherwise, ,he

berth of the ship is "updated" to be some (unspecified) slip.

This is an inadequate definition of the intended activity, for two reasons. First, it fails to restrict

.which ships can be moved to a given pier. The intent is that MOVESHIP is describing activity within a

port; it is not to be used to relocate a ship across thousands of miles. This deficiency is overcome by
the use of a precondition that states the desired relationship between the ship and pier used as

parameters-- namely, that the ship must be in the port in which the pier is located.

The second problem is the non-determinism of the slip chosen as the new berth for the ship.

Certain referents of the expression "a slip" will not achieve the intent of this action, which is to

relocate the ship at the indicated pier. A more restrictive expression could be used (restricting the

referents to slips at the desired pier) or, as in the example, the same goal can be achieved with a

postcondition stating that, when the action is completed, the ship's dock must be the desired pier. In

either case, it is unnecessary to incorporate in this action the restriction that only one ship may be in a
slip at a time. That was stated as a global constraint on the attribute "BERTH", and thus serves to

restrict the non-determinism in this action. Any attempt to invoke this action in a situation in which

there are no empty slips at the desired pier would be anomalous, as would an attempt to use it with a

ship and pier not satisfying the precondition.

The second action, LOADSHIP, is intended to capture the change of process state which occurs

when cargo is added to a ship. In this case, all that is modeled is an update of the tonnage of the
given cargo on the ship, so that the new tonnage in the relation CONTAINS is the sum of the previous

tonnage and the increment loaded (or just the increment loaded if the ship did not contain any of the

given cargo). To capture the intended restriction in our domain, a precondition requires that the ship

be docked at a pier which handles the specified cargo.

Finally. the action ASSIGN-CARGO captures the process of getting a specified tonnage of a given

cargo loaded onto a ship bound from one port to another. The body of this action begins with a

8The rules for naming and giving the type of formal parameters of actions are the same as the rules used everywhere else in
Gist for variable and role names

' I , III

2-20 GIST SPECIFIER'S MANUAL

requirement that there be some ship having the target port as a port of call. It then uses the

previously defined actions to move any such ship to any pier in the source port, and to load the cargo

onto the ship. In this example, both the ship and pier are specified by descriptive references which

are likely to have multiple referents. The global constraints together with the preconditions and

postconditions of actions combine to restrict the non-determinism allowed by the definition alone.

Thus:

" the ship selected would have to be located in the source port. (Precondition of
MOVESHIP)

" the pier selected would have to handle the indicated cargo. (Precondition of LOADSHIP)

" the pier selected would have to have at least one unoccupied slip. (Global constraint on
the "BERTH" attribute)

" the ship selected would have to be capable of carrying the indicated cargo (Global
constraint(s), such as the non-mixing of fuel and grain cargos)

.Clearly, the specifier has considerable leeway in Gist in defining the dynamics of a process. It can

be done with the method used in programming languages- -making every reference (sufficiently)

deterministic within its local context so that the global behavior proceeds as desired. The specifier

can also use greater non-determinism in his referring expression, but bound his action definitions

with preconditions and postconditions which ensure proper global behavior. Finally, the specifier

may use global constraints to restrict the non-determinism present in his action definitions. The

remainder of this section describes the variety of constructs which may be used to compose action

definitions.

2.8.1 Primitive Statements

The primitive statements of Gist permit classification and declassification of objects, addition and

deletion of attribute values, addition and deletion of relationships, and creation and destruction of

objects. In each case, the primitive statement specifies a transition from a state S to a state S'. with

no intervening states. In many cases, the primitive statement may involve some non-determinism,

thereby specifying multiple possible state changes.

2.8.1.1 Object Creation

The create statement specifies the creation of new objects, A single create statement can specify

creating one or more new objects, and establishing relationships among the new object(s) and

existing ones. The new objects are created as part of a single state transition. In other words, the

ACTION DECLARATIONS 2.21

create statement specifies a mapping from any state S to state S' that is identical to S except for the

addition of the newly created objects, their classification into the indicated type(s), and the addition of
:i 1 the new relationships.

Foy example, the statement

create ship II ship CAPACITY = 30000,
ship REGISTRY = USA,
Ship PORT.HOME = Seattle

would specify the creation of a new ship having a capacity of 30000 tons, a USA registry and a home

port of Seattle. The new ship would not be involved in any other relationships initially.

2.8.1.2 Object Destruction

The destruction of an existing object is specified by another primitive statement in Gist. The

"destro"y statement permits the specification, via an object expression, of some object to be

destroyed. If the expression has multiple referents, then one of the referents is destroyed. If it has no

referents, then the destroy statement is itself anomalous. A literal object may never be destroyed.

Destruction of an object means eliminating all classification of it as an instance of any type, and

removing all relationships involving it. This in turn means that a process has no way of referring to an

object following its destruction except through variables that already referred to it prior to its

destruction. or by temporal reference (see section 2.9). For instance:

destroy Seattle :: PORTHOME

would (non.deterministically) eliminate some ship whose home port is Seattle. Following execution of

the "destroy" statement, even the expression "a ship" would not have the destroyed ship as a

referent.

2.8.1.3 Adding Relationships and Classifications

Addition of new information about existing objects is accomplished with an "inset" statement.

The new information may consist of an additional classification for an object or a relationship

between objects. As with the "create" statement, the relationships are specified by means of

propositions. For example, the statement:

insert CONTAINS(ship,cargo.incr)
would add a relationship between the referents of the variables "ship", "cargo", and "incr" to the

CONTAINS relation.

An additional classification for an object can also be added by the "n " statement:

L port is po rtofent ry

2.22 GIST SPECIFIER'S MANUAL

would classify the referent of "port" as an instance of the type "portofentry".9

2.8.1.4 Removing Relationships and Classifications

A relationship can be removed by means of the "delete" statement.

delete (A ship): PORTOFCALL = Seattle

would remove (non-deterministically) some ship from having Seattle as a port of call.

"delete" may also be used, by analogy with "insert", to declassify an object as an instance of some

type. An execution which would leave an object with no classification, however, would be
anomalous.

2.8.1.5 Updating Relationships

Another useful change of state is the update of a relationship between objects. This has the effect

of removing an existing relationship and adding a new one. The "update" statement specifies the

relationship to be updated, by means of a proposition, the role in that relationship to be altered, and

the new value to fill that role.

updat BERTH 2f ship JQ a Slip

would change the slip at which the ship referred to by "ship" was berthed to a non.deterministically

specified slip.10

uaTONNAGE o~f CONTA INS(ship,cargo,$) to tonnage + incr

would change the quantity of the cargo referred to by "cargo" on the ship referred to by "ship" to the

sum of its previous value (referred to by the use of "tonnage" as a variable in the expression giving

the new value) and the amount "incr".

If the relationship in an update does not hold, the update serves to add new information without

deleting anything. 1 Conversely, if the relationship to be added already exists. the update statement

serves solely to delete the old relationship. Finally, if the information to be deleted is identical to that

being added. the update statement specifies no change to the process state.

9It is not necessary that additional classifications be subtypes of existing classifications, although that is the most common
usage.

10The "new" slip could be the same slip at which the ship was berthed prior to the execution of the update statement.

1 1 1n this case, of course, the expression specifying the new object may not use the role name as a variable to refer to the
previous object.

ACTION DECLARATIONS 2-23

2.8.2 Action Invocation

A defined action is invoked by a statement which specifies the action name and an actual

parameter for each of the action's formal parameters. Each actual parameter is specified by an

object expression. The invocation is non-deterministic, allowing any referent of each expression to

serve as the referent of the corresponding formal parameter. If any of the actual parameter

expressions is anomalous, then the invocation statement is anomalous.

The invocation specifies the behavior specified by the action's definition.

LOA DSHI P[ship,cargo,tonnage

indicates the execution of the behavior defined by the action LOADSHIP using the referents of
"ship", "cargo", and "tonnage" as actual parameters.

2.8.3 Compound Statements

Gist provides a variety of compound statements to permit specification of:

* Sequential state changes. A process encompasses multiple state transitions, not just a
single transition from an initial to a final state.

* Conditional state changes. How a process alters a state may be conditioned by the state.

* Alternative state changes. The activity of a process may be non-deterministic in certain
situations.

The statement syntax of Gist includes forms for specifying such state changes.

2.8.3.1 Conditional Behavior

The conditional statement permits selection of an activity based on the current process state. The

simplest form of conditional statement consists of a predicate together with a statement to execute if

that expression is TRUE and/or a statement to execute if it is FALSE. In addition to conditioning the

behavior, the conditional statement may produce an augmented variable reference environment for

the selected statement. If the predicate is TRUE subject to some assignment of values to variables

(see section 2.7), the "then statement" is executed with that assignment augmenting the previously

existing variable assignment. Analogously, if the predicate is FALSE subject to some assignment of

values to its variables, the "else statement" is executed in an augmented variable context. Since

there may be multiple distinct assignments subject to which a predicate is TRUE, or multiple

assignments subject to which it is FALSE, the augmented assignment may be non-deterministic. If

the predicate is TRUE, but the "then statement" is anomalous for all assignments which make it

TRUE, the conditional statement is itself anomalous. Anatogously, if the predicate is FALSE but the

2.24 GIST SPECIFIER'S MANUAL

"else statement" is anomalous for all assignments which make it FALSE, the conditional statement is

anomalous. For example,

Ji 3 ship II CONTAINS(ship, Wheat, A tonnage 11 tonnage > 5000) A
INPORT(ship, Seattle)

th insert ship : PORTOFCALL a port
else ASSIGN.CARGO[Wheat, 5000, Seattle, port]

would test whether there was a ship in Seattle which contained at least 5000 tons of Wheat. If so,

some such ship would get the referent of "port" added to its ports of call. If not, the action ASSIGN-

CARGO would be invoked to load wheat onto a ship in Seattle bound for that port. If there were one

or more such ships in Seattle, but (because of constraints) it was not possible to assign the new port

of call to any of them, then the if statement itself would be anomalous.

2.8.3.2 Sequential Behavior

As in most programming languages, the sequential execution of distinct statements is specified by

a block statement, which is simply a sequence of statements bracketed by "begin" and "end". The

lexical order of appearance of individual statements in the block specifies the order of statement

execution. each statement being executed in the process state resulting from the execution of its

predecessor.

2.8.3.3 Point Invariants

The primary restriction of non-determinism in Gist specifications arises from the various forms of

constraint declaration, which preclude otherwise permissible executions. The declared constraints

restrict non-determinism throughout their scope; they are not tied to any particular state of the

process. Point invariants specify conditions which are required or prohibited only at particular states

of the process. While point invariants appear in Gist as statements, they do not specify any state

transition. They limit non-determinism in a specification by being anomalous if executed in a state in

which the predicate is FALSE (in the case of a requirement) or TRUE (in the case of a prohibition).

Point invariants serve a second purpose in a Gist specification. When the invariant is satisfied,

(one of) the variable assignment(s) subject to which the predicate was satisfied augments the existing

variable assignment for the remainder of the lexical scope in which the point invariant appears. A

given point invariant may be included in a specification for either of these two purposes--limiting non-

determinism or augmenting variable assignment--or for both purposes.

For exmple, the point invariant:

reouire 3ship 11 ship : PORTOFCALL a port.to

ACTION DECLARATIONS 2-25

appearing as a statement would make anomalous any execution which reached that control point in a

state in which no ship had the referent of "port.to" as a port of call. If there were such ships,

however, there would be one continuation of the execution for each such ship. In each continuation,

the variable "ship" would refer to the corresponding ship for the remainder of the lexical block in

which the point invariant appears.

2.8.3.4 Alternative Behavior

Much of the non-determinism in a process is specified through use of non-deterministic object

expressions in predicates and as actual parameters of actions. Non-determinism also results from the

use of quantified variables in predicates which establish referents for those variables. However, non-

determinism does not always factor so nicely, as in the English example "Either buy a second car or

move closer to work". The choice block permits this kind of specification. The choice block specifies

execution of any one of the statements in the block. The lexical order in which the statements appear

has no significance. If every statement in the block is anomalous, the choice block is itself
anomalous.

reouire 3 ship II ship : PORTHOME = Seattle:
choose'

destroy ship;
update PORT.HOME Qf ship tO g port 11 port Seattle

gn choose
end

The above example specifies either of two possible transitions: a Seattle based ship is either to be

destroyed or assigned a new home port.

2.8.3.5 Preferential Behavior

A situation which is similar to alternative behavior is one in which multiple alternatives are possible,

but these alternatives can be ordered by preference. An English example is "Try to move closer to

wo-k. but if that isn't possible, buy a second car". This is expressed in Gist by a preference block.

The preference block permits a specification to "control" the effect of anomaly. It specifies the

execution of the first (in order of lexical appearance) statement in the block which is not anomalous.

Which statement this is is in general dependent on the current process state. If every statement in the

block is anomalous, then the preference block itself is anomalous.

rgouire 3 ship I ship :PORT.HOME = Seattle;
attempt

updlate PORT.HOME 21 ship IQ A port port Seattle;
d ship

4?

2-26 GIST SPECIFIER'S MANUAL

Ind attempt
end

This example is identical to the "choose" block above, except that the order of statements in the

"attempt" block is significant. In this case, we have specified a preference for reassigning the ship

over destroying it.

2.8.3.6 Non-primitive Granularity

The domain model of typed objects and associations has a "basic" processing granularity. The
.primitive transitions at this level are insert, lelet, update, create, and destroy. The ideal process

being specified, however, may have a coarser granularity. That is, some conceptually indivisible state

transition in the ideal can only be described in terms of multiple primitive transitions.

This issue must be faced in the specification language because domain constraints, temporal

reference, and demon triggers are naturally defined with respect to states of the ideal process. But
independent of this it is important to capture the granularity of the ideal process in the specified

process. The primary reason for this is the enhancement of maintainability. Adding a new constraint

or demon to a specification with the wrong granularity will not yield the desired new specification.

Rather than indicating when (particular) constraints and demons are to be checked, the specifier

should define indivisible database transitions matching the granularity in the ideal process. The

resulting srecification will define a process having no spurious intermediate states.

In Gist, non-basic granularity is specified by enclosing multiple statements within "atomic" ... end

atomic". The collection of individual transitions specified by the bracketed statements specifies a

single, indivisible state change. For example, a ship's home port and country of registry could be

simultaneously changed by:

atomic
update REGISTRY 2f ship IQ country.new;
uDdate PORT.HOME of ship IQ port.new

en.d atornic

2.8.3.7 Iterative Behavior

The iteration statement consists simply of a "generator" of the objects over which the loop runs

and a body, a statement which is executed on each iteration. There are two distinct types of iteration

in Gist: iterations over the changing state of the data base and iterations over the state of the data

base before the iteration begins.

ACTION DECLARATIONS 2-27

To understand this distinction, consider the following (ambiguous) sentence: "Move ships so that

every ship in port containing corn which is not at pier.2 is relocated there." The ambiguity (of interest

in this section) is that of whether it is intended to achieve a state in which all ships containing corn are

at the indicated pier, or if just those not originally there are to be relocated.

The basic distinction between the two iteration types is whether the predicate is applied to the

initial state (before the iteration begins) or whether it applies to the (potentially altered) state at the

start of each repetition. In the first case:

3 ship I INPORT(ship,port) A
CONTAINS(ship, Corn, $) A
ship : DOCK * pier.2

attemd
MOVESHIP[ship, pier.2];

MOVESHIP[ship, a pier];
MOVESHIP[ship, pier.2]

end
end attemot

This iteration would (if possible) move all ships containing corn and not initially located at pier.2 to

that pier. They would be moved one at a time, in an unspecified order. If possible, a ship would

simply be moved to the pier, without disturbing other ships. If necessary, however, some ship could

be moved to make room for the new ship. Since the ship being moved could well be one which

contains corn (including one moved to the pier on a previous iteration), there is no guarantee that the

loop terminates with all ships containing corn at the pier. It is only guaranteed that each will have

been at the pier during one of the iterations.

If the word "L=o" is replaced by the word "h", the other iteration semantics obtains:

A.fii 3 ship II INPORT(ship,port) A
CONTAINS(ship, Corn. $) A
ship : DOCK # pier..2

attempt
MOVESHIP[ship, pier.2];

MOVESHIP[i shiO, a oier];
MOVESHIP[ship. pier.2]

end
gnd atternt

In this case, a new ship is computed at the beginning of each repetition. The iteration will terminate

as soon as, but not before, all corn carrying ships are docked at pier.2.

2.28 GIST SPECIFIER'S MANUAL

2.9 ADVANCED TOPICS

Gist contains several important specification concepts not covered in this introductory manual. In

this section, the most prominent of these are mentioned.

2.9.1 Sets and Sequences

The concepts of set and sequence are primitive to Gist. Expressions can be written whose

referents are sets or sequences of objects of some type. The elements of sets and sequences may

themselves be sets or sequences. The need for sets is rarely felt in Gist, because non-deterministic

expressions can be thought of as referring to "sets". Sequences, however, are needed to specify

certain kinds of ordering information.

2.9.2 Multiple Lines of Control

Gist has a concept called "agent" which permits specification of processes which involve multiple

lines of control. An agent is composed of a collection of actions, which specify that agents
"capabilities", and , collection of "demons", each of which specifies how the agent behaves in

response to changes in the process state. For example, each port might be an agent in the ship

domain, reacting to the arrival of ships at the port and to new purchase orders.

2.9.3 Temporal Reference

As a process executes, information is being produced and consumed. In writing a program to

perform the process. a programmer must be concerned with the storage space required to hold this

information. Programs manife-t this concern by using compact or implicit representations of

information, by representing only that information essential to correct execution, and. most

pervasively, by releasing space used to store information that is no longer needed.12 In a

specification language. however, there is no reason to be concerned with storage space as a finite

resource. As a process executes the current collection of objects and associations changes, to be

sure. But the history of execution and database state;, is conceptually well defined, in the sense that

expressions and predicates can be assigned natural meanings with respect to past times as we'l as

with respect to the current state. Gist permits reference to non-current information by means of

1 2 Programming languages include facilities, such as block structure and garbage collection, which help the programmer
deal with this storage allocation problem More importantly, as we shall see, programming languages simply do not orovide

certain rich constructs, whose counterparts are available in natural language, that would make the storage allocation problem
too difficult for current compiler cepabilities.

ADVANCED TOPICS 2-29

reference to past process states. This in turn is accomplished by allowing predicates to be used to

reference past states in which they were true, and by permitting reference to intervals of states which

constitute.events.

2.9.4 Boundaries

Gist permits the specification, by object type, of the "extent" of an object--that is, what other

objects are an inherent part of the object. This permits the specifie. to tailor, for each type, the

semantics of high level concepts like destroy, object aquivalence, and containment.

2.9.5 Orderings

Gist also permits the specification of "orderings" on objects. A rich sublanguage is provided for

this, so the specifier does not have to "implement" the concept in terms of something more general.

Once defined, the orderings can be used for comparing objects (just as numbers can be compared

because they have a predefined ordering), and for controlling the execution order of iterations.

2.9.6 Meta Concepts

Collections of declarations may be named and parameterized, and then later specialized to a

particular purpose. This permits the definition of high-level concepts like "labeled binary tree".

3-1

3. GENERAL APPROACH TO WRITING GIST
SPECIFICATIONS

While it is not possible to give step-by-step instructions for the construction of a Gist specificaton,

an outline of the usual approach should enable a Gist novice to avoid being overwhelmed by the task.

The basis of Gist is a simple underlying modeling structure: objects and relationships among them

in the task domain are modeled by objects and relations in Gist (a relational database-like model).

Change within the world is modeled by creation and destruction of objects, and by insertion and

deletion of relations. Thus Gist specifications are fundamentally operational in nature. Gist's

expressive power derives from the features built upon this underlying model.

To determine an appropriate set of object classes and relation names, a natural language

description of the target process will prove useful. The description will be used only as a guide in the

initial stages of development and need not be complete, detailed, nor even consistent.13 This

linguistic description will serve basically as a guide to the terms which need to be defined in Gist.

3.1 IDENTIFYING TYPES AND SUBTYPES

The first task of a specifier is to decide on a collection of object types that will capture the important

objects, or values, that the process manipulates. A good rule of thumb is to consider common nouns

(particularly concrete nouns) appearing in the linguistic description as the names for object types.

Although the collection of type names thus derived will likely need augmentation later, it should

provide a solid basis for further development. At this time, it is also a good idea to identify any of

these type names which are used to describe sets or sequences of other named types.

In any sizable application domain some names will refer to large classes of objects and other

names to subsets of the same objects. Although often the verbal names used for types give no clue to

these supertype connections, certain patterns should be considered. Noun pairs, such as "cruise

ship", are frequently used to name subtypes of the second noun, as are compound nouns. Adjectives

frequently are used with nouns in the same way, as in "military vessel". It is important to identify not

only which classes include which others, but which sets of classes are disjoint and which overlap

without strict inclusion. Often the use of Venn diagrams will prove helpful in this chore.

13For a Serious software development project, of course, a good natural language specification is important. In this section,
however, we are assuming that the specifier understands the process he wishes to specify quite clearly, but is unfamiliar with
Gist.

3-2 GENERAL APPROACH TO WRITING GIST SPECIFICATIONS

3.2 IDENTIFYING INDIVIDUALS

In order to fully describe a process, it is sometimes necessary to refer to individual objects (values)

as well as to entire classes. The names of individuals may be freely chosen by the specifier, but the

type to which each belongs must be declared.

Linguistic clues that indicate the need for declaring individual instances of types include the use of

proper nouns, mass nouns, and collections of adjectives (like color names) used to modify the same

type names. These distinguished individuals are those which are ued somewhere in the descr;ption

of process activity or of constraints in the domain. They are not used for the purpose of describing

"test data" for some test of specificaton behavior. A specification may have no such individuals.

Even where they are necessary. it may not become apparent until later stages of development, when

they are needed to describe the dynamic aspects of the process.

3.3 IDENTIFYING RELATIONS

The second major task of a specifier is to determine the interesting ways in which objects in the

application domain can be related to one another. In describing a process in English, we use specific

words and syntax to describe the ways objects are related to one another. In "ship bound for

SantaBarbara" the phrase "bound for" indicates a particular relation that can hold between ships

and ports--namely, a ship can be scheduled to go to a particular port. "A ship based in

SantaBarbara" uses a different phrase, "based in", to talk about a different relation between the

same two types. "A ship containing 50 tons of wheat" indicates yet another relation in this domain.-

ships may contain specific quantities of specific cargos.

In other cases the only linguistic indication of a relation will be a purely syntactic connection, such

as the use of possessive noun phrases or prepositional phrase modifiers. The specifier must choose

a distinct name for each distinct relation. It is generally wise to keep type names and relation names

distinct. For each named relation, the specifier should identify the most general named types which

can be related by that relation.

3.4 IDENTIFYING DERIVED CONCEPTS

The next step is to look for any identified relations which can be defined in terms of other named

relations (possibly by recursive definition), and for identified types which can be defined in terms of

other types and relations. These situations provide the basis for derivation rules in Gist. In some

IDENTIFYING DERIVED CONCEPTS 3-3

cases, pairs of relations will -be found where either could be defined in terms of the other. A

particularly common case of this is where the two relations are inverses of one another. It is usually

best to define both relations in terms of some more neutrally named relation."

3.5 IDENTIFYING STATIC CONSTRAINTS

The declaration of types and relationships lays out a wide variety of possible process states- -that is,

states containing collections of instances of those types and relationships between objects of

appropriate types. However, it is nearly always obvious that many of these states may never really

arise. Sometimes this is because of physical constraints in the process domain. In other cases, it is

not physical reality, but the desired process which restricts the potential states. In either case, it is

wise to identify these constraints at this stage of development.

In choosing what constraints are worth stating explicitly, a verbal process description is of limited

use. Some constraints may be expressed verbally, but many are such "common knowledge" that

they are left unstated. A specifier can state any obvious constraints which come to mind before

working on the procedural portion of his specification. But he should be on the lookout for situations

where he is writing procedural specification for the purpose of "avoiding" a problem. A particularly

common kind of constraint which can generally be identified at this stage is a "cardinality" constraint.

For each binary relation R relating types T1 and T2 (not necessarily distinct), consider how many

instances of T2 may be related in R to a single instance of T1, and vice versa. Sometimes there will be

only a lower bound on the number, sometimes an upper bound, and often both. When a relation is a

function, the upper bound will be 1. If it is total, the lower bound will be 1. One should also determine

if there is a more restrictive cardinality restriction on R when considering subtypes of Ti and T2.

3.6 IDENTIFYING ACTIONS

The information gathered in these steps provides the basis for expressing, in Gist declarations, the

static structure of the application domain. Any application domain will also have a variety of activities

carried out by processes in that domain. These activities change the state of the process in some

way. They may create or destroy domain objects. change object relationships, or classify or

declassify objects. Furthermore, the execution of an action serves to "mark time" in the process,

each action execution being an "event" in the process history. The linguistic process description can

14 Ultimately the entire specification may be conveniently written in terms of the more neutral relation without any reference
to the derived terms

3-4 GENERAL APPROACH TO WRITING GIST SPECIFICATIONS

serve as a guide to the actions which need to be defined. In general, transitive verbs and nominalized

verbs indicate some action which needs to be defined. For each action, the specifier should

determine the types of objects on which the action can operate, any "preconditions" on such objects

which restrict the situations in which it is appropriate to perform the action, and a statement of how

the action changes the process state.

3.7 IDENTIFYING DYNAMIC CONSTRAINTS

A more difficult class of constraints on a process consists of conditions restricting allowable

change in the process state. Identifying these, like identifying static constraints, can make the

specification both easier to understand and easier to construct correctly. The simpler forms of such

constraints to look for are restrictions prohibiting change in certain relationships involving objects

following their creation, or restricting the nature of such change.

3.8 IDENTIFYING ACTIVE PARTICIPANTS

In most large systems. it is natural to think of the behavior as being produced by the interaction of

multiple participants, or agents. These agents are often themselves objects in the application

domain, and thus can be classified by the same means used for non-active objects. For each agent

class, the specifier should attempt to identify the named actions which are performed by agents of

that class.

3.9 PROGRESSING IN C)MPETENCE

After following this approach in the specification of a few simple processes. the specifier will

become sufficiently familiar with the fundamental concepts of Gist to intermix the gathering of

information about his application domain with the encoding of that information in Gist. He should

also feel free to be less rigid about the order in which information is gathered and encoded. These

steps are illustrated in the next chapter, particulary in the first example.

4-1

4. CONSTRUCTING GIST SPECIFICATIONS

In this chapter we wish to illustrate our approach to writing Gist specifications (as described in the

previous chapter) through three examples. These examples are all reai, moderate-sized systems

chosen to demonstrate the applicability of Gist to a wide range of military applications. For each of

these examples we describe the system io be specified and how we applied the Gist approach to

specification writing to formulate these specifications. The description of the application of our

approach to specification writing is most detailed for the first example.

The actual Gist specifications for these examples can be found in Appendix II.

4.1 SOURCE-DATA MAINTENANCE EXAMPLE

The task we are about to specify was chosen to be a test of the existing features of Gist, to suggest

the need for additional features, and to promote development and recognition of principles of "good

practice" in the construction of specifications. The size of the task, whilst still small in comparison to

many real-world activities, is larger than "toy" examples. As such, we begin to see how the difficulty

of constructing and understanding specifications in Gist grows with the scale and complexity of the

task.

The example we specify is taken from [4]. It is concerned with maintaining programmers' source

code. where the code is arranged into a hierarchical structure of units, files, libraries and projects.

The user issues a batch sequence of commands to create, modify, and destroy portions of this

structure. Figures 4-1 and 4-2 summarize the structure of the domain and the user commands to be

supported.

The description upon which we base our specification consists of 16 pages of English text, plus 9

pages of "HIPO" diagrams which graphically depict input, functional processing, and output of the

system. Our intention was not merely to formalize the English description, but rather to specify

formally the desired behavior of the source-data maintenance system implied by the English. The

crucial difference is that we regard the English description as being biased in many places towards a

particular implementation. The disadvantages of this bias are that it compromises one's ability to

perceive the desired behavior as opposed to the chosen implementation, and as a result some

portions of the English specification are wrong (in the sense that although it is a specification, it is

clear that the behavior implied is not the behavior intended), some are ambiguous, and some

important details are left unstated, and that it overly constrains the implementation. ,

• '4

4.2 CONSTRUCTING GIST SPECIFICATIONS

project

rc F

4..1Supressed detail

consiton a ni t ni

*UnitAccounting-Record hc akg oehrifrainaotuis(nfc

obserues).

4.. Spr ss deal

Bf co w iureti tes mrpt mureo of specification e willmi to ctr a
chosen not to specify. These fall into three classes:

1. Implementation details. From our earlier comments, it comes as no surprise that we
should suppress details of this nature. Examples of such suppression include

" Data compression by removal of blanks when writing code to disc (this would be a
- constraint upon an implementation for an environment short of space);

" Unit Accounting Records which package together information about units (in fact
they are merely a convenient implementation package, not objects that the user
observes).

Of course, when directing the implementation of a specification we will wish to constrain
~~the implementation choices in some ways. To do this we would provide such constraints l

SOURCE-DATA MAINTENANCE EXAMPLE 4-3

Command name purpDose

UPDATE Maintenance of existing files

subcommands of UPDATE:
ADD Add a new unit
PURGE Remove a unit
REPLACE Replace the contents of a unit
COPY-UNIT Copy a unit
CHANGE Maintenance of existing units

subcommands of CHANGE:
INSERT Insert lines into unit
DELETE Delete lines from unit
SHIFT Shift characters left or right on line(s)
MODIFY Modify line(s)
COPY-LINES Copy lines into unit
+ explicit insertion/deletion of numbered lines

COPY-FILE Copy file across project

BACKUP Preserve for later restoration projects,
libraries, files or units

RESTORE Restore preserved state of projects,
libraries, files or units

Figure 4-2: User commands supported by the system

separate from the specification of the functional behavior, which itself leaves maximum
freedom of choice to the implementor.

2. Interface details. We aim to specify the desired behavior independent of the interface
with the external world. This is accomplished by modeling the relevant portions of the
external world as another (incompletely described) participant with whom interactions
occur via the standard internal communication mechanisms. As part of the
implementation of such specifications, external interfaces are chosen and the mappings
between the external and internal representations defined. Such concerns should not
compromise the clarity of the functional specification. This leads to the suppression of

, the precise format of incoming commands (we assume that we receive a sequence
of objects of type command);

* the identification of objects in the world by alphanumeric names (we assume that
the commands provide a reference to the object they are associated with, just as all
modeled objects provide references to other objects through relationships);

s identification of lines by sequence numbers (again, we assume that the commands
reference the lines in question directly).

Naturally. any implementation will obviously have to take into account these
requirements, which we would state separately.

*v

4-4 CONSTRUCTING GIST SPECIFICATIONS

3. Refinements. We concentrate upon specifying the "normal-case" behavior of our world.
For example, although our specification must trap all error conditions, explicit provision
of diagnostic error messages for all the cases is detail we wish to suppress for the time
being, and would provide as a separate refinement of the normal-case behavioral
specification.

4.1.2 Plan for Cor'structing Source-Data Maintenance Specification

As described in the previous chapter on writing Gist Specifications, a specification is organized to

present the features of the task being modeled iin a comprehensible manner. This organization is

repeated below, particularized by the features of the source-data maintenance domain.

1. Define the object types and relations to model the objects of the domain (projects,

libraries, files etc.) and the relationships amongst them (e.g., files are related to libraries).
As we make these definitions we may conveniently express some of the constraints of the
domain (e.g., that every file belongs to precisely one library).

2. Define the "static" constraints on our domain-.static in the sense that these constrain the
state of objects and relations at every point in time without reference to their history (e.g.,
lines in units are of length Card-Length).

3. Define the types and relations to model the internal interface with the environment (user

commands).

4. Define the actions which change the state of the world.

5. Define the "dynamic" constraints on our domain--dynamic in the sense that these
constrain how the world may change from state to state.

6. Model the active participants of the domain who react to certain stimuli in the world and
respond by invoking actions to appropriately modify the world.

This organization is convenient both as a framework to aid understanding of the specification and

as a framework to introduce the Gist language features.

4.1.2.1 Modeling objects and relationships of domain

Figure 4-3 illustrates the modeling we aim to achieve at this stage. Objects and relationships

among them within the task domain are modeled as objects and relationships in the specification

domain. Files libraries, etc., are modeled as distinct objects connected by relations. This simple yet

powerful basis allows us to model task domains in a very direct fashion,

The objects are typed. so our first definition is that of the types of objects of the domain, after which

we will define the relations linking them. E.g.:

SOURCE-DATA MAINTENANCE EXAMPLE 4-5

project

PROJECT- PROJECT-
CLASSIFICATION LI RARY

classification library

LIBRARY-
FILE

file

PASSWORD-OF-FILE FILE-UNIT

password unit

Figure 4-3: Modeling of objects and relations in Gist

l project; .ya. library; tye file; yl.p unit;

relation PROJECT-LIBRARY(PROJECT I project , LIBRARY I library);

defines PROJECT-LIBRARY to be a relation between an object of type project and an object of

type library. Each position in the relation definition is filled by <identifier> I <type>. where identifier is

an arbitrary name. By convention, when the identifier is the name of the type, the identifier alone

suffices. E.g.:

relation PROJECT-LI BRARY (PROJECT, LIBRARY);

The relations are not restricted to be binary, nor do they have any inherent directionality (i.e., it is

possible via PROJECT-LIBRARY both to derive from a project a library, and to derive from a library a

project).

4.1.2.1.1 Notation for types and binary relations

Often we have occasion to define many binary relations, as is the case in our example. For this

purpose a convenient notation permits the simultaneous definition of a type and binary relations it

participates in. E.g.:

ItU project(LIBRARY , CLASSIFICATION);

declares project to be a type. and declares two binary relations which connect projects with libraries

and projects with classifications. We refer to LIBRARY and CLASSIFICATION as the attriue of

project. Note that there is a degree of freedom in choice of which type to make the attribute of the

others; in the above case we could just as easily have made project be an attribute of libraries. This is

purely a matter of taste (remember that we are using a notational convenience for the underlying type

and relation definitions, which themselves have no preferred directionality) and should be made to

4-6 CONSTRUCTING GIST SPECIFICATIONS

most closely conform to the accepted conceptualization of the domain (i.e., improve

understandability). The notation supports extraction of information through attribute relations, e.g.:

to denote a classification related to project p (i.e., going
downhill in Figure 4.3) we would write
p:CLASSIFICATION

similarly, to denote a library related to project p (again
going downhill in Figure 4-3) we would write

p:LIBRARY

but, to denote a project related to library / (i.e., going
uphill in Figure 4-3)

/::LIBRARY
("::" to go from attributee to attributor)

The '.." notation is easies to remember in terms of the following rule
if p:LIBRARY = /

then
/::LIBRARY = p

The "::" notation should be read as "the object which has / as its LIBRARY attribute".

Last, we may also incorporate into this notation some simple constraints on the participation of

objects in such relations (over and above the implicit constraint by type). For example, within our

domain every project is related to exactly one classification. Similarly. every library is related to

exactly one project. However, a project may have any number (including 0) of libraries related to it.

These constraints- -all restricting the number of objects that may participate in relations--can be

expressed within our type/attribute notation. To constrain how many objects of the attribute type

may be attributed to a single object of the defined type, we follow the attribute name with ":" and an

appropriate keyword. Similarly. to constrain how many objects of the defined type may share as an

attribute a single object of the attribute type, we follow the attribute name with "::" and an appropriate

keyword. Our choice of keywords includes any (no restriction), unjgj (precisely one), multiple (one

or more), and optional (zero or one). E.g.:

type project(LIBRARY :n :: uniue , CLASSIFICATION :unigue n);

(The use of ":" and "::" is intended to parallel their use in expressions, so just as "p:LIBRARY"

denotes a library attributed to p, "project(LIBRARY :an ..." constrains how many libraries may be

attributed to a project.)

One final remark before we show the definitions for our -example is to state defaults for these

constraining keywords: we have chosen to let omission of ":" and following keyword to be equivalent

to :unoj, and omission of "::" and following keyword to be equivalent to ::Any.

SOURCE-DATA MAINTENANCE EXAMPLE 4-7

4.1.2.1.2 Type and attribute definitions for the domain

We define here the types and attributes for the domain of the example specification:

ly.21 project(LIBRARY :An. ::unicue , CLASSIFICATION):

I= library(FILE :aLn ::uniaue);

t..y.k file(UNIT :jLy ::uniue , PASSWORD :optional);

lyp& unit(UNIT-CONTENTS I seouence of line , UNIT.KEY I key :ootional
SOURCE-LANGUAGE I language :optional);

t line(CHARS I seouence of character , LINE-INCLUDES-UNIT I essence 2f unit :..)

ty 2& language(); tyrp keyo; tvpe classification(); l passwordo.;

Two remarks on the above:

Notation: seouence of is a built-in type constructor. An object of type "secuenc2f f tV (where t is

some type) iS a sequence of objects of type t. In the following examples we shall see notation to allow

construction, modification and interrogation of sequences. Other type constructors are set and

multiset. Sequences, sets, and multisets are included in Gist because of the convenience they

provide. They are built-in parameterized types. In contrast, user-defined types may not be

parameterized in Gist. This restriction does not appear to be a drawback, at least in the examples we

have considered. We believe our specification style circumvents the need for such power, since our

objects are atomic, gaining their definition from their relation to other objects. This is against the

trend of modern typed languages, in which the user objects are complex entities having structure and

values.

The LINE.INCLUDES.UNIT attribute of line models the ability to include notionally a unit at that line's

location by referencing the unit (so that for compilation, listing etc., the effect is as if the contents of

the referenced unit were included at that point). Because the source-data maintenance system is

intended to support top-down programming, it must be possible to "include" a unit which does not

yet exist. Gist permits references to objects that may not yet exist (or may no longer exist) by

declaring such references to be of type "essence f t", where t is the type of the object being

referenced, as used above in the type definition for line.

4-8 CONSTRUCTING GIST SPECIFICATIONS

4.1.2.2 Static constraints

We use constraints in specification to state concisely and explicitly all the constraints that the

model, in reflecting the world, must satisfy. We saw in the previous section some simple constraints

on how objects could fill relations. A more general language construct permits the use of any

predicate as a constraint which must always be satisfied. If we think about implementation, this may

imply considerable expense in checking constraints every time the world changes in a way that might

violate them. In implementing constraints we probably would want to distribute appropriate checks

throughout the code at all potential violation points. During specification, however, it is better to state

the constraint just once; and this aids understandability, reliability and maintainability (having stated a

constraint, we are assured that the specified behavior must always satisfy that constraint, even if we

modify or introduce new activities).

4.1.2.2.1 A "static" constraint

A constraint of the source-data maintenance world is that

"All lines within the unit-contents of a unit must be of length Card-Length."

This we express by

always required
V :ne I 3 unit. integer MEMBER(unit:UNIT.CONTENTS,inleger.line)

==> (e nth(line:CHARS) = Card-Length);

This exhibits some of our notation in use. We follow the convention that

- underlining denotes "reserved words" of Gist
- boldlowercase denotes type names
- SMALLCAPITALs denotes attribute names
- lowercaseifat'cs denotes variable and parameter names
- BOLD UPPERCASE denotes names of relations, actions and derivations
- '/, ed CaseIrafics denotes objects referred to literally

In the above example. always required introduces a predicate which must be true in every state of

the world. The predicate in this case is a quantification over all objects in our world of type line.

MEMBER is a ternary relation among a sequence, a location within that sequence (specified by a

positive integer) and the object at that location. Thus for all lines in our world, for those that are in the

unt-contents (a sequence of lines) of any unit. their character sequence (extracted by taking the

:CHARS attribute) must be of length Card-Length.

We have a shorthand which simplifies writing a predicate of the form 3 <variable> II ...<variable>...

where the variable occurs only once in the scope of the existential. The shorthand consists of

omitting the "3 <variable> 11", and writing S in place of the variable in the body. So the body of the

above constraint becomes

SOURCE-DATA MAINTENANCE EXAMPLE 4-9

V line 11 MEMBER(S:UNIT:CONTENTS,$,line)
-0 (len.th(/ine:CHARS) m Catd-Length)

4.1.2.2.2 The use of derivation

A second example of a constraint in our world concerns the "line-includes-unit" relation, the

means by which a line within the unit-contents of a unit may reference another unit. The intended use

of this is that during compilation, listing etc., the contents of the referenced unit be included at the

location of the line. The constraint we wish to impose is that such inclusion may not be circular (with

the obvious meaning).

To express this constraint, we build in stages. First, for convenience, we define a new relation

UNIT-INCLUDES-UNIT which relates unit-a to unit-b whenever unit-a contains a line "including"

unit-b. Second, we form the transitive closure of UNIT-INCLUDES-UNIT. Last, we express the

constraint by simply prohibiting self inclusion (since any circular chain will have led to derivation of

UNIT-INCLUDES-UNIT between a unit and itself). To define the new relation we make use of a Gist

construct called a derivation, which is a means of automatically inferring some relation to hold

whenever a predicate holds. E.g.:

relation UNIT-INCLUDES-UNIT(INCLUDOR I unit , INCLUDED I unit)

derivation DERIVE-UNIT.INCLUDES-UNIT(unit-a I unit . unit-b I unit)
whenever 3 line 11 MEMBER(unit.a:UNIT.CONTENTS,$,line) A

(line:LINE-INCLUDES.UNIT = unit-b)
conclude UNIT-INCLUDES-UNIT (unit-a,unit-b)

unit-o unit-b

UNIT-CONTENTS LINE.INCLUDES.UNIT

(line

0 line

lin 2e UNIT-INCLUDES-UNIT

unit-a o o unit-b

To form the transitive closure of UNIT-INCLUDES-UNIT we say

4-10 CONSTRUCTING GIST SPECIFICATIONS

derivation DERIVE-TRANS-CLOSURE.UNIT.INCLUDES-UNIT (unit-a I unit , unt-c I unit)
whenever 3 unit-b I unit 11 UNIT-INCLUDES-UNIT(unit-a,unid.b) A

UNIT-INCLUDES -UNIT (unit-bunit-c)
conclude UNIT-INCLUDES-UNIT (unit.a,unit-c)

Finally the constraint may be expressed by

always prohibited

3 init II UNIT-INCLUDES-UNIT(unitunif);

The use of derivations is akin to the use of constraints insofar as it allows the explicit statement of

the derivation rather than distributing the derivation mechanism throughout the code where it might

be appropriate.

4.1.2.3 Modeling user commands

We model user commands causing appropriate changes to the source-data by making the

commands into explicit objects. The user provides a sequence of such commands which the system

then processes. performing the appropriate action(s) for each command. An alternative would have

been to define actions for each of the commands and expect the user to invoke the actions directly

(we would then have had to impose constraints on the order in which commands could be issued.-

e.g.. an add command must have been preceded by a correspvnding update command). Our choice

was motivated by the nature of the described task.-the system acts in a batch-like manner, accepting

a sequence of commands which it then processes.

An implication of this choice is that many of the attributes of commands must be of type "essence

f t" rather than simply "t", because the command exists before or after the object referred to (e.g..

one of the update-sub-commands in a sequence of such may be a purge-command, which will

continue to exist beyond the point of its processing; however, the unit will have been destroyed).

The command type definitions are as follows:

type file-spec(FILE, PASSWORD :octional);

(we introduce file-spec to connect a file ree'ence with a passworo)

t commando supertye f"
(update-command ; copy-file-command ; backup-command

restore-command >;

Ile update-command(CURRENT.FILE.SPEC I file-spec
UPDATE-SUB-COMMANDS seouence of update-sub-command);

tY2e update-sub-command(CURRENT.UN-r Jessence pt unit,
UNIT-KEY I key :otJional)

suoertype of ,

SOURCE-DATA MAINTENANCE EXAMPLE 4-11

< add-command ; purge-command ; replace-command
copy-unit-command ; change-command >;

add-command(DATA I seguence of line.
SOURCE-LANGUAGE I language :optional)

purge-commando;

replace-command(DATA I seouence of line);

Icopy-unit-command(FROMUNIT I essence21' unit,
FROM-FILE-SPEC I file-spec :optional);

1&change- command (CHANGE-SUB.COMMANDS I
sguence o1' change-sub-command);

Im temporary-change-command() subtype pf < change-command >;

I2change-sub-command supertvye 2f
< insert-command ; delete-command

shift-command : modify-command
copy-lines-command ; replace-line-command >,

.t,.YP_&. insert-command(DATA I sequence of line,
SEQUENCE-LOCATION :otJonal) ;

deJete-command(LiNts essence pf seouence Qf line):

. shift-command(LINES Iessence f seouence pf line.
COLUMNS I integer);

tyipe modify-command(LINES J esence of seounce pf line,
NEW-STRING I seauence f character,
STARTING-COLUMN I integer :optional,
OLDSTRING I seauence of character :optional);

_ .U copy-lines-command(FROMUNiT I essence of unit,
LINES I essence of seguence of line,
SEQUENCE-LOCATION,

FROM-FILE-SPEC I file-spec :optional);

replace-line-command(OLDLINE I essence of line, NEWLINE line);

.a copy-file-command(TO-FILE.SPEC I file-spec, FROM-FILE-SPEC I file-spec);

U backup-command(OBJECT I essnce of project U library U file);

iye restore-command(BACKUP-STATE I state , OBJECT I essence of
project U library U file U unit);

4.12 CONSTRUCTING GIST SPECIFICATIONS

4.1.2.4 Modeling change

The simple and unified modeling of the world as a set of objects and relations among them permits

a simple model of change. The primitive actions that cause change are:

" create - create a new object of a given type

" destroy destroy an existing object (and in so doing delete all relations in which it
participated)

• insert, insert (in the state) a relation among objects

Sdelete, delete an existing relation among objects

* uodate- change the object filling a role in some relation

These serve to build up all the changes we wish to model.

4.1.2.4.1 Object boundaries

Some conceptualty simple and common activities in the world may involve many primitive actions to

accomplish them, e.g., when deleting a unit we may wish the sequence of lines attributed to that unit

to be deleted also. Languagei which use structured object definitions also use that structure to

determine the extent of such operations. We feel this is a s..rious overloading of concepts. Instead,

we explicitly define the extent or "boundary" of our structural objects so that actions may be applied

to the entire collection of objects and relations associating them

To do this we augment type definitions with boundar definitions, which serve to direct how

operations such as destro create. etc are to affect an oblect and its relationships. E.g.

t pe unit(...) bound eguiv I

ecuiv :UNIT-CONTENTS.
= :UNiT.KEY,
= :SOURCE-LANGUAGE

tells us that two units are equivalent if their UNIT.CONTENTS attributes are equivalent (a recursive

appl-cation of equivalence), their UNIT-KEY attributes are identical (i.e., if either has a key as such an

attribute, then they both must have one, and it must be the same key--equivalence of keys is not

sufficient) and their SOURCE-LANGUAGE attributes are identical. The use of "0ljVv" or = before the

a:tribute name distinguishes whether to apply equivalence testing recursively between that attribute

of each object. or simply test the attribute values for identity.

The same boundary definition will not necessarily be appropriate for different operations: e.g., in

SOURCE-DATA MAINTENANCE EXAMPLE 4-13

destroying a unit, we may wish destroy to be applied recursively to the UNIT-CONTENTS attribute but

not the UNIT-KEY or SOURCE-LANGUAGE attribute, in which case our boundary definition for destroy

would read:

Jy~a unit()bound destroy by :UNIT-CONTENTS

note that for the purposes of destroy either we follow an attribute and recursively apply destroy to the

related object or we do not; there is no distinction corresponding to the equivalent/identical

distinction as appeared in defining equivalence between two objects. Hence in defining a boundary

for destroy we simply name the attributes to be followed without prefixing them with either "egiv" or

4.1.2.4.2 The top-level action to support user-commands

We define in our model an action SOURCE-DATA-MAINTENANCE which takes as argument a

sequence of commands and makes the appropriate changes to the source-data as directed by those

commands. We specify the interface to the user by defining as part of the system a demon (a

construct with two parts, a trigger, a predicate, which upon becoming true causes the response to be

performed). Its trigger would be the user activity to initiate processing; its response would be the

invocation of SOURCE-DATA-MAINTENANCE with the appropriate command sequence. This

interaction paradigm serves to clearly delineate the interface boundary between user and system, and

is general enough to describe interfaces between multiple, independently active participants. In our

simple case an implementation would undoubtedly utilize a simple subroutine call as interface.

The definition of SOU RCE- DATA-MAINTENANCE is as follows:

action
SOURCE-DATA-MAINTENANCE[commands I seouence of command]
definition

over commands named corn
g2 at tempt

c corn Of

update-command => UPDATE[comn);

copy-file-command > COPY-FILE[com];

backup-command 0) BACKUPcorn];

restore-command 0> RESTORE[com];

IMd case;

The construct 2= <sequence) name <variable> dg <statement> iterates through the sequence in

&

4-14 CONSTRUCTING GIST SPECIFICATIONS

order, binding the variable to the current element of the sequence within the scope of the statement.

Here the effect is to invoke the appropriate lower level action depending upon the sub-type of the

command.

The most interesting part of this definition lies in the use of the atempt construct. Within Gist, if a

transition leads to a state that violates a constraint, we say that the resulting state is anomalous, and

prohibit that transition. In som -ases there may be more than one way of performing the transition

(e.g.. if we said

hggin reuire 3 unit ; destroy unit lad

and several units exist, then we may pick any one of them to be destroyed). If all possible ways of

performing a transition from some state lead to anomaly, then that state itself is anomalous. Thus

anomaly can propagate backwards. Attempt is a construct that limits such propagation. We use it

here in a simplified form of its more general version,

attemo <statement1 > then <statement 2> els <statement 3>

This has the semantics of <statement1) ; <statement 2> if there is a possible non-anomalous execution

of <statement1), otherwise <statement3>X We use attempt in our example to limit the failure of a user-

command to that command alone, rather than aborting the processing of the entire sequence of

commands.

Definition of action UPDATE is similar to SOURCE-DATA-MAINTENANCE. It is an iteration

through a command sequence, invoking the appropriate lower level command. We now turn our

attention to the actions to perform the lowest level commands.

4.1.2.4.3 A simple action

The purge command (to get rid of a unit) is supported by the following action:

action PURGE[unit]
definition destroy unit

The simplicity of this definition is due to two factors. First, the separate statement of constraints

means we need not clutter PURGE's definition with checks to ensure that the user has provided the

correct unit-key (as required in this example for those units which have an optional unit.key), that the

unit is not included elsewhere, etc. Second, the separate definition of a destroy boundary for type

unit ensures that when we state destro unit, we also destroy its UNIT.CONTENTS sequence of lines.

fr+

SOURCE-DATA MAINTENANCE EXAMPLE 4-15

4.1.2.4.4 Adjusting process "granularity"

The ADD command (to add a new unit) is a little more complex:

action ADD[unit I essence Qf unit, file, add-command]
definition
begin

atomnic
Lcreate unit, c,.py-of-lines I seguence pf line f

copy-of-lines = add-command: DATA A
unit : UNIT-CONTENTS r copy-of-lines;

insert fie:UNIT = unit
end atomic:
if 3 key I I key = add-command:UNIT.KEY
then insert unit:UNT-KEY = keyt end :;

The construct create unit ... 11 ... unit:UN IT-CONTENTS = .. ; is used to create a new unit and provide

it with its UNIT-CONTENTS attribute.

The interest here lies in the use of the atomic <statement>; ... ; <statement> end atomic construct.

The problem is that we must create a unit and insert it as an attribute of a file. Because of our

constraints, all units must be attributed to a file; hence we must somehow perform the creation and

insertion within a single state transition, so that on completion all will be well. This is precisely what

atomic provides--the enclosed statements are all executed conceptually within a single state

transition. so that constraints are checked only at completion, not during spurious intermediate

states. (If the state resulting from an atomic is anomalous, then the whole transition is anomalous.)

Thus atomic is a means of increasing the processing "granularity" to a coarser size than the primitive

transitions (create. destroy. . l and update).

4.1.2.4.5 Non-determinism and constraints

Non-determinism is a common feature of Gist specifications. Specification of a particular object

may be non-deterministic, e.g.,

bgg± reouire 3 variable I type ; <statement>; <statement>; ... and

binds the variable to any object of the named type within the scope of the following statements. (If no

such object exists, it is an anomaly.) Specification of the order in which to do some actions may be

non-deterministic, e.g.,

over { <object> .. , <object>) do <statement>;

iterates through the set of objects in any order.

4-16 CONSTRUCTING GIST SPECIFICATIONS

The task we are specifying may be non-deterministic in nature (but this is not the case with the

source-data maintenance task). This is not the sole use of non-determinism; often it is particularly

convenient to specify some activity in a non-deterministic manner and let the constraints filter-out

only the acceptable paths. This allows us to specify the desired behavior without having to

algorithmically determine what choice necessarily must be made. This latter form of non-determinism

does occur within our specification, as we shall see next.

4.1.2.4.6 Shifting characters on a line

An example of filtered non-determinism is the specification of the SHIFT action, to support the

user-command shift, causing characters on a (unit's) line to be shifted left or right. We define a

relation ISSHI FTED between two sequences of characters and an integer, which holds if and only if

the non-blank portion of the first sequence is equal to the non-blank portion of the second sequence,

and has been shifted by the specified number of columns--by insertion of extra blanks if a positive

number of columns, deletion of blanks if a negative number.

This we specify by

relation ISSHIFTED(NEWCHARS seauen e of character,
OLDCHARS I seauence of character, COLUMNS-TO-SHIFT I integer)

definition
3 old-le't-blanks seauence o" ", old-right-blanks sequence of

new-left-blanks I seauence of ., new-right-blanks j seaugence of "

non-blanks I sequence of character 11

-MEMBER(non-blanks , S , " ") A
oldchars old-lefl-blanks @ non-blanks @ old-right-blanks A
newchars new-left-blanks @ non-blanks @ new-right-blanks A
length(new-left-blanks) - 1en.th(old-left-blanks) = columns-to-shift

Observe that this definition implies that if there is at least one shifted version of a sequence (there

might be none. if we tried to shift a non-blank character off the left of a sequence), then there exist an
:nfinite number of equally valid shifted versions of the sequence (since extra blanks can always be

tacked onto the end).

I A I B1 CID)

-- shifted versions of
A ItsT I

& &e

SOURCE-DATA MAINTENANCE EXAMPLE 4-17

The sole purpose of this definition is to state what shifting means--the responsibility is left to the

prevailing constraints of ensuring that the sequence of the appropriate length is inserted into a line of

some unit-contents (namely, the one restricting character sequences of lines in units to be of length

Card-Length). Thus. the shift action can merely select a sequence of characters which satisfies the

ISSHIFTED relation to update each appropriate line. Notice that non-determinism has been used in

two powerful ways here. First, through the ISSHIFTED relation, to select an appropriate object

defined by its acceptance criteria without specifying how it should be computed. Second. the

constraint on the length of lines, further filtering the satisfactory objects. The main difference

between the two is that the first is a purely local acceptance criteria (as defined by the relation), while

the second deals with the object usage (arbitrarily far into the future) and restricts choice to those

which will not violate constraint.

The definition of action SHIFT using this is:

action SHIFT[shift-command]
definition

over shift-command: LINES named line
dg update :CHARS of line to

some newchars I j eguence of character
ISSHIFTED (newchars, char6,shift-command : COLUMNS)

Notation: some x I type 11 P(x) selects any object of the type that satisfies P(x).

4.1.2.4.7 The use of historical reference

Given that our modeling is based upon states and transitions between them, it is particularly

convenient to have the ability to extract information from any previous state. If we did not have the

power to make such "historical references", we would be forced to remember all information that

might possibly be needed at some time in the future. This would both clutter up the information

carried along from state to state and complicate our activities (since they would have to save such

information explicitly). Thus historical reference is another example of a specification technique that

allows us to limit our concerns to only those which are of current importance.

Once we have accepted the use of historical reference, it is natural to have the full power to refer to

states as we have with any other type (with the limitation that we cannot change what has aiready

happened!). Furthermore, observable events include not only the primitive transitions, but also the

start and completion of action invocations.

4-18 CONSTRUCTING GIST SPECIFICATIONS

4.1.2.4.8 Historical reference and inserting lines into units

One of the sub.commands of CHANGE is INSERT, to insert a sequence of lines into the unit.

contents of a unit. The user optionally provides a specific location for the Insertion to occur. If it is

omitted, the lines are to be inserted after the last line changed in the unit since the start of the

CHANGE command, or at the front of the unit if there has been no such change.

To model this we first define a relation between a unit and the latest state (since last starting

CHANGE on that unit) in which the unit contents then differed from the unit contents now:

relation LATEST-STATE-OF-CHANGE(UNIT , CHANGESTATE I state)
definition

changestate = latest some state 11 Unit: UNIT-CONTENTS -eauiv

(unit: UNIT-CONTENTS Al Qf state) A
state after latest start CHANGE[unit,S]

Notation: <expression> M of <state> causes the expression to be evaluated in that state. jj~t

<state> , where <state> is some expression denoting a state or states, denotes the most recent such

state. start <action>J<object>,...] denotes the state(s) in which invocation of that action (with those
objects as actual parameters) began. state1 after state 2 is true if and only if state, is more recent than

state 2.

Thus in the above "state after latest start CHANGE[unit,SJ" will be true if and only if state is more

recent than the latest start of CHANGE on unit.

Then, if such a state exists, we may determine the location of the change and insert the new lines

after it; otherwise insert them at the front of the unit.

4.1.2.4.9 Historical reference and backup/restore commands

In the English specification of the source-data maintenance system, backup and restore commands

cause portions of the world (libraries, files, etc.) to be written to or recovered from magnetic tape. In

our modeling of the behavior (as opposed to implementation) within Gist, backup becomes a totally

superfluous operation, since with historical reference we may refer to any past state and perform a

restoration of an object to the condition it was in in that state. The ramifications of this for any

implementation are that at any point in time the user might request restoration of any object to any

earlier state! If, however, we choose to insist that the user's restore commands may only restore

objects to the state they were in when explicitly mentioned in a backup command, the implementation

need be prepared to make only such restorations, rather than arbitrary ones.

• t I

SOURCE-DATA MAINTENANCE EXAMPLE 4-19

This is an interesting case,- a non-obvious line between specification and implementation. We

follow the more restrictive style of restoration, retaining the backup command to mark an object and a

state by its invocation:

a BACKUP[backup-command]

A restore command must refer to a state at which a hackup command was invoked, and to an

object that was the object, or within the object, given as the argument to the backup command:

action RESTORE[restore-command]

III obj i essje of project U library U file U unit
- restore-command: OBJECT

precondition
3 backup-command II

restore-command: backup-state = slart BACKUP[backup-command) A
backup-command:OBJECT contains obj)

Al. f restore-command: BACKUP-STATE

definition
restore obj 1s of restore-command:BACKUP.STATE

Notation: restore <object> M of <state> restores the object to the condition it was in in that state.

creating/destroying objects and inserting/deleting relations to make the object equivalent (with

respect to its type's boundary definition for w jvln --see 4.1.2.4.1) to its earlier condition. Thus

restoring a file, for example, will involve deleting new units attributed to the file since the specified

state and restoring the units that were attributed to the file in that state.

4.1.2.4.10 Historical reference and desired behavior

We have demonstrated how historical reference can be used to support BACKUP and RESTORE

commands. It can also support the "temporary" change option. The user command CHANGE. to

cause changes to a unit (with sub-commands INSERT, SHIFT, etc.), may be declared to be

"temporary" in nature, in which case at the end of processing the current batch of user commands

the (presumably) changed unit is to be restored to its state prior to commencement of the temporary
changes.

We should, however, ask whether either form of restoration, either user-directed via the RESTORE

command, or automatically because of earlier "temporary" changes, could possibly fail. It turns out

that this possibility does indeed exist. Suppose we have two units, unit-A and unit-B, and unit-A

b

4-20 CONSTRUCTING GIST SPECIFICATIONS

contains a line that "includes" unit-B. At this point we issue a backup command for unit-A, or change

it temporarily. Now if we delete the."include" line in unit-A, we may then be able to change unit-B to

insert a new line "including" unit-A. From this state it would be impossible to restore unit-A to its

original condition, since this would violate our constraint prohibiting circularity of includes.

Should the attempted restoration simply fail, or should the modification of unit-B have been

prevented? We must decide which of these (or other) alternative behaviors we want. The English

specification, by not saying anything. suggests the first option, namely restoration can simply fail. Our

feeling is that the possibility of such failure was never even recognized, and this behavior was

dictated by circumstances rather than choice. Reasonable behavior might be that in the case of user-

issued backup and restore commands, restore could fail in the manner described above (i.e., it is the

responsibility of the user), whereas in the case of temporary changes, it must always remain possible

to do the restoration (we don't want to surprise the user with an "automatic" facility that fails!). Our

point is not that this is the "right" choice, rather that the existence of such a choice must be

recognized and the choice consciously made, otherwise the resulting system may exhibit surprising

and inappropriate behavior.

Our suggested choice permits us to demonstrate another Gist feature. We wish to write a

constraint to ensure that restoration (of temporarily -changed units) will always be possible. To do this

we say

always required

admissible RESTORE-TEMPORARILY-CHANGED-UNITS[]

where RESTORE-TEMPORARILY-CHANGED-UNITS is the action to perform the appropriate

restoration.

The construct admissible <statement> is a predicate that is true if and only if there is some non-

anomalous way of executing the statement in the current state of the world--however, the statement is

nct actually executed, i.e.. the current state is not changed. but a truth value is returned. This is a

simple form of "future" reference. Often the easiest way of predicting a result of doing something is

to extract the desired information from the state in which it has been done. but proceed (with the
information) from the state prior to doing it.

SOURCE-DATA MAINTENANCE EXAMPLE 4-21

4.1.2.5 Dynamic constraints

The defined constraints serve to limit the possible states that the model world may achieve. We

notionally distinguish between "static" and "dynamic" constraints by classifying those that refer only

to the current state as "static", and those that refer to several states (usually the current state and the

previous one) as "dynamic".

4.1.2.5.1 A "dynamic" constraint

An example of a dynamic constraint taken from the source-data maintenance world is:

A unit may not be destroyed if it is included anywhere"

We express this constraint by forbidding a transition from a state in which a unit exists to a state in

which that unit no longer exists (i.e., has been destroyed in the transition) but is still "included" by

some line in the contents of a unit.

always prohibited
3 dead-unit J essence of unit

dest roved dead-unit A UNIT.INCLUDES.UNIT($, deao-unit)

Reference to a past state is via the destroyed predicate, which is true if and only if the object existed

in the immediately preceding state and has been destroyed in the transition.

This explicit statement of the constraint contrasts with the English specification, wherein no similar

statement occurred; instead, an implementation to achieve the same effect (by making use of

reference counts) was described. This was particularly inappropriate for several reasons: the

intended behavior had to be deduced from the implementation; the other parts of code lost clarity

because they had to deal with reference counts; worst of all, it was actually wrong - in the case of

destroying an entire unit no mention was made of decrementing the reference counts of units

"included" by lines of the destroyed unit.

4.1.3 Review of specification

The previous section demonstrated the use of Gist's features in some of the specification of the

source-data maintenance task. The entire specification is available from the author.

We may now look back and ask the following questions:

1. How effective are the Gist features for expressing the structure and behavior of the task
domain?

2. What have we learned about the task from having written a formal specification?

d"t i i

4-22 CONSTRUCTING GIST SPECIFICATIONS

3. What difficulties arose in constructing the specification?

4. How comprehensible is the specification to someone other than the writer?

5. What do we intend to do with the formal specification?

4.1.4 Implications for Gist

Most of the Gist features used to specify the source-data maintenance task were present in the

language prior to tackling this example. Certainly the underlying modeling approach proved

satisfactory. We were led to some additions and notational refinements. These we;e:

* essenc 2f, as a means of maintaining references to destroyed or yet to be created
objects.

- boundary definitions, to support dtroy, restore, etc.

* attribute notation for defining and making use of binary relations.

4.1.5 Implications for the source-data maintenance task

In constructing a formal specification in Gist we feel we have developed a much deeper

understanding of the task than we had from merely reading the English description. We were led to

recognition of ambiguities. implementation biases, and possible errors in the informal English.

Formalizing in Gist forced us to consider behavioral interactions which we might otherwise have

overlooked (for example, between restoration and constraints).

It may well be the case that spending a similar amount of time studying the task (without producing

a Gist specification) would have led to the same insights, so we should regard the above observations

as lack of negative evidence rather than additional positive support for our approach.

4.1.6 Difficulties of constructing the specification

A significant degree of effort was required to construct our specification. We attribute much of the

difficulty to the need tc infer the desired behavior from the English description. As we have already

remarked, we found this description to be overly biased towards a particular implementation; hence

we could not merely formalize the description, but rather had first to disentangle its intent and

formalize that.

We were also hampered by a lack of experience of writing Gist specifications. Faced with a choice

of alternative ways of specifying some behavior, we had little experience to guide our choice.

SOURCE-DATA MAINTENANCE EXAMPLE 4-23

Finally, we recognize the need for some assistance in understanding the implications of our

specification. In building a specification from descriptions of desired behaviors in simple cases we

must be careful to consider the possible interactions of these cases and ensure that the resulting

behavior is satisfactory.

4.1.7 Difficulties of understanding specification

We have observed that readers of our specification find it hard to understand- -even other members

of our group who have equal fluency in Gist. We attribute this in part to out emphasis on easing the

task of the specification writer rather than the reader--Gist is still in development and there are

undoubtedly many cosmetic improvements which would help. Nevertheless, there is more to

specification than merely ensuring we have an effective notation. First, specifications may require

some explanation of how they were derived--for example, make explicit the choices faced by the

specifier and his reasons for choosing one over another. Second, some assistance is required to help

the new reader build up gradually to a comprehension of the entire specification. We envisage

several tools to assist comprehension. For example, a sophisticated interpreter would permit

exploration of the behavior of a specification and analysis toots could outline the possible areas of

interactions among the features of a specification.

Finally we might organize our specification into layers of increasing complexity, working from a

simplified specification suppressing (or distorting) features in the higher layers, so that by descending

from layer to layer an increasingly accurate ando-,rmP/ete comprehension of the specification can be

incrementally built up.

4.1.8 Use of specification

The main purpose of a Gist specification is to serve as a behavioral description. We must define

which portions of its behavior are "observable" (e.g., observable behavior of the source-data

maintenance specification would presumably include the creation / destruction of units, files,

projects, etc., but not the invocation of particular actions PURGE, CHANGE. etc.). Given such a

notion, we may ask whether an implementation exhibits the same observable behavior. If we can

demonstrate that it does. we have validated that implementation. We have not as yet developed a

syntax for expressing the observable portions of behavior of a Gist specification.

One of our long-term research aims is to be able to take formal specifications of behaviors written

in Gist, together with relevant details suppressed from our behavioral description (namely, interface

and implementation requirements, and refinements of the described normal-case behavior) and

4-24 CONSTRUCTING GIST SPECIFICATIONS

transform them to achieve efficient implementations. We are sure that such transformations will

require human guidance, since the distance between our specifications and any tolerable

implementations is very wide.

For example, consider removing Gist constraints. Our aim would be to replace them by checks at

all possible choice-points in the program that could lead to violation of the constraint. In cases where

we cannot construct an appropriate predicate at the choice point to recognize which choices will lead

to anomaly we would have to resort to other mechanisms, such as back-tracking. A detailed

* transformation which illustrates these problems is presented in [1].

4.2 HOST-IMP SPECIFICATION

4.2.1 Overall organization of specification

First we define general message-passing features common to imps and hosts, then we describe the

specific features. We encompass the effects of user interaction and hardware failure as random

activities with which the hosts and imps must be able to cope.

4.2.2 General message.passing features

We model message-passing by defining types item and node. Objects of type node transmit

objects of type item between themselves. At this generai level each item has two attributes--a

MESSAGE (further details of which we will not need at this level) and an ADDRESS--the node to which

the item is to ultimately be delivered. The Gist construct agent is used to describe nodes. in order that

they may be independently active processes.

nodes - we denote connections between nodes via relation CONNECTED. For simplicity we

prohibit a node from being connected to itself.

Each node has the following attributes,

* PENDING - those items yet to be dealt with by the node,

* TO-BE.SENT - items to be sent elsewhere by the node.

* MY-MESSAGES - messages extracted from items which are addressed to this node.

Each node has the following actions and demons:

* action TRANSMIT - this causes at, item to be transmitted to a (connected) node.

HOST- IMP SPECIFICATION 4-25

" >endina-demon RECEIVE - this demon is triggered when a transmission directed to this
node is begun (i.e., a TRANSMIT action is invoked, with this node as the destination). Its
response is to await completion of the TRANSMIT. If the completion was normal, then the
'transmitted' item is inserted into the node's pending attribute. (If the completion was
abnormal, nothing is done, modeling the loss of a transmission if the transmitter fails
during transmission).

" pending-demon PROCESS-PENDING - this demon is triggered when a new item is
added to the node's pending attribute. Its response is to remove the item from the
pending attribute (cleaning up), and on the basis of whether or not the item is addressed
to this node, insert it into the my-messages attribute or the to-be-sent attribute.

pending-demon SEND - this demon is triggered when a new item is added to the node's
to-be-sent attribute. Since the response in this domain will turn out to be so dependent
on whether the node is a host or imp, we will only present the definitions of SEND
particular to hosts and imps.

- action ACTIVATE - this action is to be invoked when the agent is activated. It clears the

to-be-sent and pending attributes, and waits Relay-Set-Time (a hardware requirement).

A separate agent hardware failure is defined to model the random hardware failure of nodes.

Two demons are provided, one to (at random) deactivate a node, and the other to (re)activate a node.

The intention is that this specify part of the environment in which the nodes operate, not that this be

something the implementor must incorporate into his software!

4.2.3 Specialization to host-imp world

We refine the agent node into host and imp. We refine the type message into user-message,

acknowledgement (to acknowledge successful receipt of an item), host-dead-

acknowledgement (to acknowledge receipt of an item at the imp connected to the destination host

when that host is currently "dead", and host-going-down-message, which a host sends its

connected imp to indicate it is (voluntarily) going down. Since we are only concerned with host

communication via imps, we prohibit CONNECT holding between two hosts.

A separate agent interface defines random demons to describe relevant possible behavior of the

c-u,tside world. This consists of two demons,
- USER-SEND to create a user-message with destination some host and insert it into the

to-be-sent attribute of a host;

- USER-TURN-OFF-HOST to create a host-going-downr-nessage and insert it into the to-

be-sent attribute of a host (this models the voluntary means by which a host goes down).

4-26 CONSTRUCTING GIST SPECIFICATIONS

Agent host inherits the definitions of agent node. In addition, it also has the following:

" attribute CONNECTED-IMP, defined as the (unique) imp to which the host is CONNECTed
(in both directions).

" pending-demon SEND - this demon is triggered by insertion of a new item into the host's
TO-BE.SENT attribute. Its response is to TRANSMIT the item to its connected-imp (in
point of fact, because of our constraints, the connected imp is the only node to which the
host could possibly transmit the item).

Agent imp inherits the definitions of agent node and in addition has:

- Attribute DEAD-HOSTS, to record which of the hosts are known by this imp to be currently
"dead" (down either due to hardware failure, or because they sent a host-going-down.
message). This is maintained by two pending-demons:

. MARK-HOST-DEAD, which inserts a (connected) host into the imp's dead-hosts
when that host has become inactive or a host-going-down-message has been
received by the imp from that host.

• UNMARK-HOST-DEAD, which removes a host from the imp's DEAD-HOSTS
attribute upon successful receipt of any item (other than one with a host-going-
down-message as its message attribute) from that host (successful receipt is
observed by watching for insertion of an item into the PENDING attribute).

, pending-demon SEND - this is triqgered when a new item is inserted into the imp's TO-BE-
SENT attribute. Its response is to first remove the item from that attribute; then it tests to
see whether the imp is connected directly to the destination address of the item--i' so,
and if the destination is a host, then the appropriate acknowledgement must be sent and
the item TRANSMITted (depending upon whether that host is currently regarded as
dead). If the imp is not connected directly to the item's destination, then it is
TRANSMITTED onwards through the network (in this specification we are not concerned
with selecting which node in the network is the most appropriate to pass the item on to).

* pending-demon RECEIVE - a slight specialization of the RECEIVE defined for nodes, in
that the response waits for termination of the TRANSMIT or 15 seconds (a "timeout").
As before. only normal completion of the TRANSMIT will cause insertion of the item into
the PENDING attribute.

* oending-demon PROCESS-MY-MESSAGES, to discard messages addressed to this

•ato ACKNOWLEDGE-OK, used to create an acknowledgement for an item,
addressed to the creator of that item.

" action ACKNOWLEDGE-DEAD, similar to ACKNOWLEDGE-OK, but used when the

destination host is currently dead.

" demon CONNECTED-HOST-GONE-DOWN - this is triggered when a connected host is

HOST.IMP SPECIFICATION 4-27

observed to have become inactive. Its response is to invoke action DEADIFY, to discard
all items addressed to that host at present in the imp's to-be-sent attribute, and to
unschedule all pending SENDs of items to that host.

- demon TARDY.SEND-OUEUES is triggered if an item addressed to a connected host
remains on the to-be-sent attribute more than 30 seconds. Its response is to invoke
DEADIFY.

4.2.4 Implications for Gist

We required the following refinements of Gist:

aaents, which have independently active processes. In addition, such agents may be
externally activated and deactivated. Deactivation is to abort the currently active and
triggered processes of that agent. While deactivated, no demons of that agent will be
triggered. Upon activating a previously deactivated demon, action ACTIVATE is
invoked. None of the history prior to activation is available to that agent. Furthermore.
agents must be able to voluntarily suspend themselves for some period of time via wait.
during which time none of their demons are triggered. Following the delay, the currently
active process continues from the point after the wait.

* Real time -"seconds" for wait delays, timeouts, etc.

- pending and non-pending demons. Non-pending demons are the usual Gist demons.
which upon triggering are invoked immediately (perhaps interrupting the processing of
another demon's response). For this specification we required another class of demons.
which upon triggering would add themselves to the end of an implicit queue of already
triggered demons. Only after the demons earlier on the queue had completed their
responses would such a demon be permitted to commence processing its own response.
This incorporation of a weak scheduling mechanism into the Gist demons was thought
appropriate, rather than having to explicitly build a scheduler. We did some explicit
program-controlled manipulation of the pending queue when some of the pending
demons were to be unscheduled.

4.3 TEXT FORMATTER SPECIFICATION

4.3.1 Source of Problem

The formatter we specify is designed to have the capabilities of the formatter described by

Kernighan and Plauger in chapter 5 of their book [2].

We give a (very) brief and informal account of the facilities the text formatter is to provide.

Input to the formatter is a sequence of lines, where lines consist of sequences of characters. Some

lines will be text, some will be commands to the formatter. Command lines are identified by the

4-28 CONSTRUCTING GIST SPECIFICATIONS

occurrence of a "." in the first column followed by a two letter abbreviation of the name of the

command.

In action the formatter may be in a "fill" mode, during which paragraphs are formed by packing as

many input words as possible into the output lines, the lines being "right-justified" (to produce an

aligned right margin, like this paragraph) by padding out with extra spaces between words if

necessary. When not in "fill" mode the input text lines are output without modification, With filling

switched off, the words already gathered to go into the next output line are put out without right

.justification. This action of forcing out a partially collected line is called a break. Some of the

commands implicitly cause breaks when they are encountered, even though they may not cause

filling to be switched off.

We present the commands and briefly explain their actions:

"filling" commands

fi Cause a break and switch on "fill" mode.

nf Switch off "fill" mode.

br Cause a break (but does not switch into or out of "fill" mode)

paQe commands

bp n Begin page. n is an optional numeric argument, which, if present, is taken as the
number of the new page. If not present the default is to increment the current
page number by one. Causes a break. If this command would produce an entirely

blank page (but for header and footer titles), i.e. occurs af the very top of a page. it

.4 merely adjusts the page number without creating the blank page.

pl n Set page length to be n lines. Default is n = 66, does not cause break.

he t Set the header to be printed at top of each page. t is a string argument which

becomes the new header. The character "#" within the string is replaced by the

current page number. Does not cause a break.

fo t Set the footer title to be printed at bottom of each page. Analogous to the he

command.

Is n Set line spacing to n (i.e., n = 2 corresponds to double spacing). Default is n = 1,
does not cause a break.

sp n Causes a break and produces n blank lines. Default is n = 1. Does not produce

blank lines at the very' top of a page.

TEXT FORMATTER SPECIFICATION 4-29

line commands

ce n Cause a break and center the next n text lines (i.e., insert extra spaces if
necessary to cause the text lines to be centered within the current margins.)
Default is n = 1. If another ce command is encountered whilst centering text lines,
the new command's value of n takes precedence.

ul n Does not cause a break. Default is n= 1. As with ce command, encountering
another ul command will adjust the count of lines to be underlined.

rm n Set right margin to be n. Default is n = 60, does not cause a break.

in n Set left margin (indentation) to be n. Default is n = 0, does not cause a break.

ti n Cause a break and set the left margin for next output line only to be n. Default is
n=O.

Numeric arguments to commands may be preceded by a "+ " or "-", in which case the value is taken

to be the current value of the parameter being set incremented or decremented accordingly. An

exception to this is the ti command which adjusts relative to the current left margin setting.

In order that the formatter behave reasonably with text containing a minimum of formatting

commands, input lines which start with blanks or are entirely blank are treated as follows: Lines empty

but for blanks cause a break and a blank line to be output (even at the top of a new page). Lines

starting with n blanks (but followed by other characters) where n>0 cause a break and a temporary

indent of + n.

This description includes many interface details of how the user is to indicate what formatting

activities are to be applied to what portions of his text; we shall separate the specification of

* formatting activities from the specification of how to direct the application of these activities. Our

* "specification is concerned with the former, namely the tasks of formatting, rather than the interface

details. In Section 4.3.3 we briefly consider what must be done in an interface to our specified

portion.

4.3.2 Formatter activities

Input is a sequence of

" "paragraphs" - each consisting of a sequence of "info+-words", that is a word (sequence
of characters) together with layout information (margins, page-size, etc.). The words are
to be accumulated into right-justified lines.

" "info- lines" - a line (sequenCe of characters) together with layout information.

4.30 CONSTRUCTING GIST SPECIFICATIONS

"paddinge-lines" - these are to emerge as blank lines in the output, unless they would
appear at the very top of a page, in which case they are to be discarded.

We follow the convention that the information associated with the first word to go into a line sets

the characteristics for the entire line, and similarly that the information associated with the first line to

go into a page sets the characteristics for the entire page.

Information relevant to lines consists of: left*-margin, right'- margin, line+-spacing (the number of

blank lines to be inserted between each text line) and subsequent'- left'- margin (if the word/line is too

long to fit within the margins, it will be split over two or more lines--in such a case the left margin of

subsequent lines is to be the subsequent-left-margin).

Information relevant to pages consists of header,-title, footer'-title, page.-length and begin-page.

This last indicates that a new page is to be started. In the original input we do not permit info'-words

other than the very first of a paragraph to cause a begin'-page.

Output is a sequence of sequence of lines of characters, representing the page images produced

as a result of the formatting operation.

4.3.3 Interface

The input as described by Kernighan and Plauger consists of a sequence of lines, with conventions

for denoting text and formatting commands within this sequence. The input we assume pre-supposes

some interface to derive from the user-input (in whatever form) the paragraphs, info'-Iines and

padding-lines that we expect. To handle Kernighan and Plauger's input conventions our interface

would have to

- recognize and decode commands,

* extract and accumulate words (to go into paragraphs) from text lines:

• process parameter setting commands to insert the appropriate information into info+-lines,
and info,-words (e.g. a command to set the right margin to some value would cause that
value to be inserted into the inform' ' of info'-words/lines following that command
until the next such command),

- convert space down commands into the appropriate number of padding lines.

| .,. ,I) .

TEXT FORMATTER SPECIFICATION 4-31

4.3.4 Organization of specification

FORMAT is the top-level action invoked to do the formatting. This expects a sequence of

paragraphs, info+-lines and padding"-lines which compose the input to be formatted.

Formatting is divided into two overall stages- -first, the activities to form individual lines of output are

performed, then pages are formed from these lines.

FORMAT initiates the processing of the first stage by creating an object of type
mixlets'-input to which the input sequence is attributed. This will trigger the demons
PARAGRAPHING, SPLIT *-OVER LENGTH -LINES, CENTERING,
LEFT.-MARGIN.-PADDING and INTER4-LINE'#-PADDING to go to work on the input
paragraphs and info#-lines, and each perform their activity. Their net result is to convert
the input sequence into a sequence of info- lines and padding-lines (no paragraphs left)
ready to be incorporated into pages. There is some coordination between these demons
to ensure that: overlength lines will be dealt with by SPLIT+-OVERLENGTH -LINES
before INTER--LINE,-PADDING and LEFT'-MARGIN,-PADDING act on them, and
CENTERING is performed on lines before LEFT'-MARGIN,-PADDING. Otherwise they
act independently.

After the first stage of formatting we are left with a sequence of info 4 lines and padding
lines. Prior to forming pages, FORMAT converts this sequence into a sequence of

simpler objects, which we call "linelets": Each linelet has two attributes, information, and
either a line (of characters) or padding. Action PAGINATION is invoked on this sequence
to produce the sequence of sequence of lines representing the page images.

We now briefly describe the activities of these demons and actions:

PARAGRAPHING replaces a paragraph (a sequence of info-words) by a corresponding sequence

of (filled and right justified) info*-lines. This is achieved by selecting a partition of the paragraph's

words. and for each element of the partition (i.e., a sequence of words) forming an info'-line.

- If the line is to represent just one word, no justification is done.

- If it represents two or more, it must be right justified (i.e., every word separated by at least
one blank. and enough blanks inserted to align the leftmost and rightmost words with the
left and right margins).

The only acceptable partitions are those for which such justification of the necessary lines is possible.

Furthermore, we select the partition(s) which minimize the total number of info-lines produced (the

essence of what a "filled" paragraph is).

SPLIT-OVERLENGTHs- LINES - this demon splits overlength info'-lines (i.e., info-lines for which

the text is too wide to fit between the margins) into two (or more if necessary) info,-lines. (Note that

this also will take effect on lines produced during paragraphing, so excessively long words, i.e., so

4-32 CONSTRUCTING GIST SPECIFICATIONS

long that the single word is too wide to fit between the margins--each of which will have been

incorporated into a separate info,-line, will be dealt with by this demon.)

CENTERING - this demon adjusts the left-margin value of those info-lines which are to be

centered in order to center their text between the margins.

LEFT*-MARGIN,-PADDING - this demon inserts the appropriate number of blanks at the start of

each text line which has a non-zero left#-margin value.

INTER,-LINE,-PADDING - this demon inserts the appropriate number of padding lines after each

text line when its spacing value is greater than zero.

PAGINATION - this action takes the sequence of linelets and forms a sequence of sequence of

lines, the output page images. The process is similar to that applied to paragraphs; the incoming

linelets are partitioned, and from each partition a pag.-image is constructed (involving discarding

padding lines which would fall at the top of a page, adding/discarding padding lines at the bottom as

necessary to bring the total page size to the appropriate length, including page header and footer if

required). The acceptable partitions are those for which such construction is possible. From all

acceptable partitions, we select the one(s) that leads to the leist number of output pages.

4.3.5 Implications for Gist

4.3.5.1 New Gist usage

The primary novel use of Gist in this specification has been the construct continuations Pf

<statement> from whjh <object expression> satisfie <predicate>. This was applied within pagination

and paragraphing, to do the appropriate activity in such a way as to minimize the resulting number of

pages/lines. Hence we are applying a minimization predicate over all possible resulting states of the

execution of <statement>.

Extensive use was made of generator expressions to denote sequences and to iterate over

sequences.

4.3.5.2 Exposed weaknesses of Gist and dissatisfaction with specification

On many occasions within this specification there is the need to perform some action which creates

some new objects and communicates these back to the invoker--the invention and use of a unique

relation for the sole purpose of such communication is a clumsy way of achieving this. Often this is

TEXT FORMATTER SPECIFICATION 4-33

linked with the use of iterative constructs; there are powerful means of denoting expressions, and

powerful means of iterating actions, but the combination of the two is not available (i.e., iterating

actions and emerging with a result).

There seems to be a large overhead in creating all the syntactic support for relatively trivial actions,

demons, and relations.

Could we perhaps have gone even further towards a descriptive rather than algorithmic

specification? For example, the seemingly natural decomposition of the task into first forming lines

and then combining these into pages might be regarded as an unfortunate split. It might compromise

our ability to specify behaviors relying on the detailed interaction of these stages (e.g., padding out a

filled and justified paragraph with extra blanks to make the overall paragraph length longer and so

avoid "widows" or "orphans"--when the last line of a paragraph falls on the top of a new page, or the

first line of a paragraph falls at the bottom of a page). Is there some suitable structuring of the

specification that would not be biased in such a manner and yet be reasonably divided into

comprehensible components?

4.3.5.3 Advantages accrued from the use of Gist

The increased ease of writing a specification rather than an algorithm is particularly evident in:

* The use of the continuations of... construct to free us first to describe a general means of
performing some activity (e.g., forming the lines to represent a paragraph) and separately
selecting which of the possibly multiple alternatives are appropriate (e.g., we want to
minimize the resulting number of lines to represent that paragraph). Clearly we can
always write a "British Museum" style algorithm to do the same, but Gist allows us to
specify this effect with ease.

* The use of demons to direct the processing activities (e.g., centering, paragraphing, etc.
are demons triggered by the data requiring the processing these demons perform) rather
than having to write an arbitrary scheduler ourselves.

4.3.6 Extensions to formatter

Kernighan and Plauger suggest several possible extensions to their formatter's capabilities. Some

of their extensions fall entirely within the portion we have chosen to regard as interface. We will limit

our attention to those affecting the formatting activity itself. We consider how we might incorporate

these extensions into our specification (which was not designed with these extensions in mind).

4-34 CONSTRUCTING GIST SPECIFICATIONS

4.3.6.1 Separating justification and filling

We consider switching justification on and off separate from filling. A little consideration suggests

that justification is meaningless outside of the context of paragraphs; hence we may limit our

attention to the paragraphing activity.

We make use of a new relation TO,-BE-JUSTIFIED, which holds of words in paragraphs whose

lines are to be justified. As before, we presuppose that the interface has inserted this relation on the

appropriate words.

Action CREATE 4- JUSTIFIED'- INFO+- LINES'- FOR+. PARAGRAPH requires modification to examine

each sequence of words to go into a line and use CREATE-JUSTIFIED- INFOQ.LINE- FOR.-WORDS

or CREATE -UNJUSTIFIED- INFO- LINE'- FOR -WORDS as appropriate (and following such

modification might be better named CREATE+- INFO'- LINES- FOR.- PARAGRAPH).

4.3.6.2 Filtering output pages

This extension allows us to limit our interest to a subset of the output pages. This may be easily

incorporated by a modification to CREATE*-PAGE- IMAGE, causing the empty sequence of lines to

be "returned" if t! . page number is not among those in which we are interested.

4.3.6.3 Forcing text to appear on a single page

This extension is to permit us to force portions of the text to occur entirely in one page. To

incorporate this extension, we must extend the datatype information to have an extra attribute, a

"group"; the intended behavior is that all info-lines and info-words that are related to the same

group" must appear witn the same page. In the formation of paragraph lines from words we must

take care to ensure that the set of groups to which it related is the union of the groups to which its

constituent words are related. The group information will be used by relation PAGE*-PARTITION to

require that info-lines related to the same group to fall within the same element of the partition.

4.3.6.4 Extra space after sentence

The purpose of this extension is to cause more than one space to follow the end of a sentence if it
falls within the interior of a line. We may assume that this is applicable only during paragraph

formation. The effect could be achieved by first defining an end-of-sentence recognizer; then within

ARBITRARILY,-PAD,-WORDS'-WITH*-BLANKS we may examine all words except for the very last

one to go on the line and, if it is recognized as a sentence terminator, require that it be followed by at

least two blanks.

44

TEXT FORMATTER SPECIFICATION 4-35

4.3.6.5 Hyphenation during filling

We will not consider the task of determining suitable hyphenation points of words; if we were

somehow able to make such a determination we could use the information as follows:

Within CREATE+-JUSTIFIED+-INFO*- LINES*- FOR- PARAGRAPH we would extend the partitioning to

include not only all possible partitions of (undivided) words but also partitions in which a single word

could be split (according to our legal hyphenation scheme) over the end of one partition element and

onto the start of the next. The characters of the first portion of the split word would be appended with

the hyphenation character ("-"), and go to form the last info+-word of the first partition element, the

remaining characters going into an info-word at the start of the next partition element (with the

possibility of further hyphenation, which might be necessary if this is a verrrrry long word...).

For example, here are some words to be partitioned for paragraphing.

Here are some
words to be partit-
ioned for para-
graphing.

4.3.6.6 Conditionals

This class of extensions is to permit the formatting actions to be dependent on the formatting

conditions. This is the least specific of the extensions, and we can only speculate as to how

amenable our specification might be to catering for whatever power might be desired.

We anticipate that our specification style would permit such features to be incorporated in a

reasonably straightforward manner-.we may specify the alternative actions as a non-deterministic

choice at the appropriate place for jthe definition of such actions, and make the selection at the

appropriate place for the testing of the conditions.

i "

5-1

5. GIST INITIAL OPERATING CAPABILITY
DESCRIPTION

5.1 INTRODUCTION

The Gist Initial 0, -rating Capability (IC) is the first step toward a package of tools to help

specifiers create, test. and maintain Gist specifications. The IOC provides the following facilities:

- A Gist editor which enables the specifier to interactively cieate and modify the source text
of Gist specifications. The editor ensures that the specificatiorris syntactically correct at
all times

* A pretty printer which formats the text of a specification for enhanced legibility.

, A Gist evaluator capable of executing Gist expressions, predicates, and statements.

* A Gist executive which operates in the context of a "current" specification. The
executive permits the specifier to create an initial execution state, specified in Gist, and
interact with the evaluator to explore possible activity from that state.

- The ablity to save Gist specifications created in the IOC environment on files, and to load
such saved specifications into the 10C.

The structure of the IOC is depicted in Figure 5-1. The entire IOC is implemented in Interlisp [3] and

runs within the standard Interlisp environment. The user communicates through the Gist executive to

the various Gist tools. and need not interact with or understand Interlisp at all. However, any

command not specifically recognized as meaningful to one of the tools is treated as an Interlisp

command. This means that the user has available the full facilities of Interlisp, including the

Programmer's Assistant facilities. It also means that er!; r messages in response to illegal inputs may

appear obscure to users unfamiliar with Interlisp.

The editor and prettyprinter subsystems are constructed automatically (as Interlisp programs) by

another program. called POPART, from a BNF syntax for Gist. These tools provide all access to the

specification, both in its internal tree representation and its external text representation. The

specification is tested by the Gist evaluator which is composed of a declaration compiler and an

interpreter. The evaluator, through the interpreter, produces the behavior of the specification on the

test data. The evaluator uses AP3, a programming language embedded in Interlisp, to maintain an

internal representation of one or more chains of process states as the specifier tests his specification.

Finally, the Gist executive interfaces the specifier to these tools.

k i:

5"2 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

GIST EXECUTIVE

GIST EVALUATOR

Editor,

PrettyPrinter,
Declaration

&

File I/0 Inter.
Compiler preter

Dynamic
Specifi-

(cation

POPART Iatabase
AP3

Run-tirne support

INTERLISPI Figure 5- 1: Gist 10C configuration

INTRODUCTION 5-3 "

, I

5.1.1 Transliteration

In much of the printed documentation on Gist, including examples of Gist specifications, symbols

are used which are not available in the standard ASCII character set. The IOC requires that these

symbols be transliterated as shown in Table 5-1.

Table 5- "1: IOC symbol transliteration

Publication Symbol lC transliteration

A and
V or

xor
implies
equiv

1 not, -
V for all, all
3 there exists, exists
E element of
U union
n intersect

5.2 Editor, PrettyPrinter, and File I/O

The Gist editor, parser, and prettyprinter are produced automatically from a BNF definition of Gist's

syntax by a program named POPART. The full complement of commands and capabilities afforded

by the resulting tools is documented in [5]. A subset of these commands, sufficient for convenient

creation and editing of Gist specifications, is documented below. Each command has a short name.

mnemonic for the function it performs. Some commands also require an operand. A command is

invoked s;mply by typing its name (and operand) in response to the prompt "i-" from the IOC

executive. (Each prompt is preceded by a number, which can be used in Programmer's Assistant

commands to refer to the corresponding IC event.) If the command needs no operand, its name

should be followed immediately by a carriage return, without intervening spaces. If the command

needs an operand which is not Gist text, the command name should be followed by a space, and then

by the operand and a terminating carriage return. If the operand is Gist text, the command should be

followed by a carriage return, then the Gist text (which may be spread across as many lines it

convenient) terminated by two periods and a carriage return.

The editor maintains at all times a specification being edited and a current focus (syntactic

constituent) within that specification. Initially, both are empty. The editing commands will be

described in two groups:K,

5.4 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

- commands which alter the specification

- commands which change the editor's focus within the specification

5.2.1 Commands which Alter Specification Text

-Set

Gist text

The Set command requires a single operand, a Gist text string. That text becomes the current

specification and the current focus.

'-Replace
Gist text

The Replace command requires a single operand, a Gist text string. That text replaces the current

focus within the specification, and becomes the new focus.

The Replace command is also used to embed existing text in larger text. This is done by using the

special string "$$" to refer to the existing text within the embedding text. For instance, to replace the

Gist text "ship:captain" with "ship:captain:salary" either of the following commands would suffice:

-Replace
ship:captain:salary

-Replace
$$:salary

,-ReplaceAII
Gist text .. = => Gist text

The ReplaceAll command replaces every occurrence of the first text fragment, which appears as a

syntactic constituent of the current focus, with the second text fragment. The current focus is not

changed. This command is most useful for changing some identifier name in a specification.

'-After
Gist text

"r After command adds its operand after the current focus. The current focus must be an

... , o' an "iterated field" in the grammar. In Gist, this means a statement or declaration within a

7 o 'le specification within the list of roles of an action or relation declaration, etc. In general, if

en! being added is the same "kind" of thing as the current focus constituent, the After

sDrtably allowed. So, for example, a type declaration can be added after any other

o ',e After command. If, on the other hand, the current focus combines syntactically

EDITOR, PRETTYPRINTER, AND FILE I/O 5-5

with the new text to form a new constituent of the same "kind" as the current focus, the Replace

command should be used. So, to change a specification which read "officer:salary" to read
..officer:salary " 1.1" the Replace command, rather than the After command, is appropriate. The

After command does not change the current focus.

i-Before

Gist text

The Before command is like the After commanc, but places the new text immediately before the

current focus, within an iterated field.

4-Delete

The Delete command deletes the current focus, which must be an element of an iterated field or an

optional element. When deleting an element of an iterated field other than the final element, the

separator following the element is also deieted. For instance, deleting a statement in a block wili

delete the ";" following it as well.

No change to a specification is ever permitted if that change would result in a syntactically

incorrect specification. An attempt to make such a change will produce an error message indicating

a point in the text beyond which no attempted parse could progress. The specification and current

focus are left unchanged by the attempt.

5.2.2 Commands which Change the Editor's Focus

+-Find
Gist Text..

The text must be a complete syntactic constituent. Thus "salary" and "salary * 1000" a-e

acceptable, but "salary " is not. The Find command looks for an identical constituent within or

beyond the current focus. The first one found becomes the new focus. If none is found, the focus is

nct changed.

,-Top

The Top command changes the current focus to be the entire specification.

,-in

If the current focus is an "iterated field" e.g., the statements of a block, the In command resets the

focus to the first element of the iterated field. Otherwise, the current focus is set to some immediate

subexpression of the focus.

lip-

5-6 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

-Out

The Out command resets the focus to its immediate parent constituent.

Next integer

If the curren, focus is an element of an iterated field, the Next command can be used to change the

focus to another element of the field. The desired element is designated by an integer operand. The

positive integers designate has current focus as 1 and its successors as 2,3,... The negative integers

designate the elements from the last (-1) back to the first. If the operand is omitted, the focus is reset

to its immediate successor in the iterated field.

,-Previous

If the current focus is an element of a iterated field, Previous resets the focus to its predecessor in

that field.

5.2.3 PrettyPrinting

The command Pretty may be used at any time to display a formatted version of the current editor

focus. The Gist prettyprinter automatically breaks the text into lines, inserting spacing and

indentation appropriately to enhance readability of the text. Examples of the format produced may be

seen in Sections 6.1 and 6.2.

5.2.4 Commands for Saving and Restoring Specifications

-Read <filename>

The Read command expects a single parameter, a Tops.20 filename. Read restores the

specification saved on the named file. The specification and current focus in effect are both replaced

by the specification read from the file. This file should be one created by the Write command. The

Read command is equivalent to using the editor's Set command and retyping the specification.

-Write malename>

Write makes a prettyprinted copy of the current specification on the named file.

SPECIFICATION TESTING 5-7

5.3 Specification Te. 'ing

In order to test a specification, the specifier must have

• a Gist specification

o an "initial state" from which testing is carried out

* some behavior to be tested

A Gist specification consists of a block of declarations, bracketed by begin and end. The IOC

expects these declarations to be augmented by one or more Gist statements placed, by convention, in

this outermost block of the specification following the declarations. It is the function of these

statements to establish an initial state from which testing is carried out. The actual test behavior is

then run by interaction with the Gist evaluator, which consists of interdependent compiler and

interpreter portions.

5.3.1 The Gist Declaration Compiler

In order to permit the declarations (of types, relations, etc.) to affect the evaluation of the

commands used to test the specification, the IOC performs a compilation of the declarations

appearing in the specification. This compilation process is initiated by the command gist:

*-gist

In response to this command. the IOC compiles the declarations and places the user in an

environment for interaction with the Gist evaluator. In this environment, interactions are prompted by

the symbol "->, and numbered in a sequence independent from the numbering of interactions with

the editor To resume ed:tig operations, the user should type "OK" in response to the "->" prompt.

5.3.2 The Gist Evaluator

The IOC permits the user to provide Gist statements. predicates, and expressions interactively for

evaluation ,elative to the "current process state". An initial state is established by the init command;

->init

This command causes the evaluator to execute all statements in the specification's outermost block.

These statements are executed sequentially in order of appearance, and without the semantic effects

of any constraints in the specification, (including type requirements). It is currently the user's

-. ,

5-8 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

responsibility to ensure that the resulting state is a valid one. 15 Typically, the initial state is

established by means of a single atomic statement, which creates an adequate process environment

for the desired testing.

Interactive testing relative to the current state is ordered by the ".." command:

object expression, predicate, or statement

The text of the Gist constituent to be evaluated may extend across several lines of terminal input. The

final line must terminate with "..". Provided the input parses as one of the three syntactic classes

indicated, it is processed, according to its syntactic class, as follows:

" Object expressions are evaluated relative to the current state. If the expression has no
referent, "Failed..." will be printed. Otherwise, some referent of the expression will be
displayed. The current process state does not change.

Predicates are also evaluated relative to the current state. The predicate's value, TRUE
or FALSE, is displayed. If the value is TRUE, and the predicate has leading existentially
quantified variables, a set of bindings for those variables is also displayed. Conversely, if
the value is FALSE and the predicate has leading universally quantified variables, a set of

bindings for these variables is displayed. The current process state does not change.

Statements are executed from the current state. If the statement has any valid executions
some valid execution is carried out, and "success" is displayed. The final state of this
execution becomes the current process state, and is linked via the states traversed in
attaining it back to the previous current state. Otherwise "Failed..." is printed and the
current state remains unchanged. In this case the IOC command "why"

->why

will provide some indication of a reason for failure of the statement.s

The Gist constituent to be evaluated by the ".." command may make use of any types. relations,

attributes, and actions defined in the user's current specification.

Since a Gist process state is independent of variable names, each interaction takes place in a bare

variable environment - variables may not be used freely in these inputs. They may of course establish

their own internal binding environments.

15 Gist's semantics define legitimate transitions from valid states to new valid states. Until an initial valid state is established,
the constraints cannot be enforced.

16 This reason is a constraint violated along the "longest' partial execution path, as measured by a heuristic distance metric.

) ,

SPECIFICATION TESTING 5-9

5.3.3 Literal and Created Objects

Integer and character sequence Constants may be included in specifications and IOC interactions

by use of Interlisp integer and string constants.17 Constants of other base types are included by

using as an expression an identifier whose name does not contain a "." and which is not used as a

variable name in the lexical context in which it appears. All such uses of a given identifier refer to

some object, having that identifier as its "internal" name. All other objects are created by the

execution of a Gist create statement, and are given internal names consisting of the first few

characters of the objects type and several digits.' 8

5.3.4 Input/Output Facilities

Although there are no defined I/0 activities in Gist, the IOC provides a few basic facilities for

testing interactive parts of specifications.

Terminal input to a process may be provided by the pseudo expression GISTREAD. GISTREAD

(prompt-string) may appear as an object expression anywhere in a specification. The evaluator will

process this expression by printing the referent of prompt-string, which may be any Gist object

expression but is typically a string constant. The evaluator will then read a single Gist object

expression (typically a literal) from the terminal and its referent becomes the referent of the

GISTREAD expression.' 9

Terminal output is provided by the pseudo action GISTPRINT. GISTPRINT(object expression) may

appear as a statement anywhere in a specification. The referent of the object expression is output to

the terminal The output consists of the internal name of the object expression's referent, together

with its "boundary" as specified in any boundary declaration for the referent's type. The Gist syntax

for boundary declarations is extended in the IOC to permit specification of a print boundary. For

example, the declaration:

bound employee for print by :salary, ::supervisor

would cause GISTPRINT, when printing an object of type employee, to print not only the objects

internal name but to display its salary and all other objects having it as their supervisor. In displaying

1 7 Real numbers are not currently supported by the IOC.

' 8 The IOC test for object identity is based on these internal names. For this reason, literals should NOT be given names

consisting of characters followed by digits

19 GISTREAD may be considered to be a acility which allows the user to simulate an unspecified portion of a system.

5-10 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

the boundary, the values are themselves printed according to any print boundaries declared for their

types. This recursive printing of boundaries is cut off at a depth controlled by the user. The)OC

command

-> GISTPRINTDEPTH [integer]

resets the cutoff depth to the given integer. A depth of 0 indicates printing of an object's internal

name only. Depth N indicates printing an object's internal name, together with printing its print

boundary to a depth of N.1. The initial depth setting is 0.

Since all terminal I/O, whether direct commands to the IOC or GISTREAD or GISTPRINT

interactions, is performed through Interlisp, transcripts of sessions may be made with Interlisp's

DRIBBLE facility. Terminal characteristics, such as linelength, may be established by the

conventional Interlisp mechanisms.

5.4 Debugging/Testing Aids

A primitive form of debugging can be obtained by interspersing GISTPRINT statements at strategic

points in a specification. Another facility is the ability to "trace" or "break" certain activity.

Tracing consists of printing information on the terminal in response to various state changes.

Breaking is similar to tracing. but also provides a pause in execution during which the user may

interact with the lO. In particular. he may evaluate predicates and expressions relative to the

statement at which the break occurs. When satisfied, he gives an "OK" command and processing

continues.

Tracing and breaking are turned on by the IOC commands GTRACE and GBREAK:

->GTRACE [namel namen]
->GBREAK [namel name,]

where each name may be:

" An action name, in which case invocations of the action are traced/broken. The action
name. together with the names of its format parameters and corresponding actual

parameters are printed.

" A relation name, in which case every insertion or deletion of a relationship in the relation
is traced/broken.

" An attribute name, in which case each change involving that attribute is traced/broken.

9 A type name, in which case classification and de-classification of objects in the type is

traced/broken (including creation and destruction of objects in the type).
I

DEBUGGING/TESTING AIDS 5-11

The command forms:

->GTRACE [T]
->GBREAK [T]

can be used to trace/break all activity which may be traced/broken.

Tie user must be aware that in evaluating a statement, the evaluator is conducting a search for a

valid execution. Tracing and breaking takes place as the search progresses. Some of the broken or

traced activity may be taking place along paths of the search which will be abandoned, not leading to

valid executions.

Tracing/breaking may be turned off selectively by the commands:

->GUNTRACE [name 1. ... namenj

->GUNBREAK [name, namen]

T can be used as an operand to these commands to turn off all enabled tracing/breaking, regardless

of whether it was enabled with the "T" operand.

5.4.1 Modifying a Specification

After creating and testing a specification, the user will likely want to make changes to it. This is

done by exiting the Gist evaluator (via the "OK" command) and giving the editor commands

necessary to make the desired change. Most changes to the specification will require re-analysis of

part(s) of the specification for the changes to affect further testing. Currently this is only possible by

reentering the Gist evaluator (via the "gist" command) and beginning further testing with the "init"

command, which re.establishes the "initial" state as the "current" state.

5.5 IOC Coverage

Gist is still undergoing frequent change, both to the syntax of established language constructs and

by additions to the language. Appendix I contains the Gist grammar used by the IOC as of October,

1980. This is a context free grammar in the notation used by the POPART system. The Gist editor

may be used to create any specification which is a "statement" in this grammar.

The IOC evaluator is not capable of evaluating this full range of specifications. Among the

important Gist concepts not covered by the evaluator are:

o temporal reference (with a few minor exceptions)

- sets and sequences (multivalued attributes are handled, however)

A 1

5-12 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

" orderings (except for the ordering of integers)

" generators

" demons

" pseudo-parallelism

In Gist, literal objects are normally introduced in the declarations of their types. The IOC

declaration compiler does not yet process these declarations. It is therefore necessary to establish

the type of any non-numeric literals used in the specification by means of the statement(s) setting up

the initial state. This is accomplished by the inclusion of statements of the form:

insert literal is type

6-1

6. 10C TRACES

6.1 lOC TRACE--PSL EXAMPLE

Belowv is a trace of a user interacting with the 10C to explore behavior of a simplified specification

of the Program Support Library.

88-Read PSL.GST

89-Pretty
begin

type project(any library::unique);
type library(any file::unique):
type file(any unit::unique)-;
type unit(any unit-contents:line)bound destroy

by equiv:unit-contents;
type I ine(any chars:character.any includes-unit:unit);
type character;

rel at ion
UNIT-INCLUDES(includor:unitincluded:unit)

definition
there exists linelincludor:unit-contents=line and

(line:includes-unit=included or
UNIT-INCLUDES(line:incl'udes-unit,included));

always prohibited CIRCULAR-INCLUSION there exists unitj
UNIT-INCLUOES(unit~unit):
type update-command(current-file:file,any update-sub-commands:

update-sub-command):
type update-sub-command(optional current-unit:unit)

supertype, of~add-command;
purge-command:
change-command>;

type add-command(any add-data:line);
type purge-command:
type charge-command(any change-sub-commands:change-sub-command);
type charce-sub-commend supertype ofinsert-command;

modify-command;
delete-comnmand>;

tpe insert-command(any insert-data:line);
type modify-command(optional line-to-mod~line,oldchar:character.

newchar: character);
type delete-command(any line-to-del:line);

6-2 IOC TRACES

act ion
UPDATE(update-command]l-et file~update-command:current-file,

up-com:update-sub-commandaupdate-command: update-sub-commands
definition

case up-corn of add-command
=)AOO~file .up-corn];

purige-command
O)PURGE[up-com:current-un it];

change-command
=>CHANGE[up-com:current-unit ,up-com];

end case;

action
ADD[file, add-command]

definition
atomic create unit.1;

insert all unit.1:unit-contents~add-command:add-data;
insert file :unit~unit.1

end atomic;

act ion
PURGE[un it]
precondition not there exists including-unit:unit,

linelincluding-unit:unit-co~ntents=line
and line:includes-unit=unit

definition
destroy unit;

action
CHANGE~unit,change-command]let ch-com: change-sub-commandz

change-command:change-sub-commands
definition

case ch-com of insert-command
OINSERT[unit ch-com];

modify-command
=>MODIFYfunit ch-com];

delete-command
ODELETE[unit,ch-com]:

end case;

act ion
.INSE RT~unit in sert-command]

def in ition
insert all unit:unit-contentsinsert-command:insert-data;

action
DELETE[unit .delete-command]

definition
delete all unit:unit-contents~delete-command:line-to-del;

IOC TRACE--PSL EXAMPLE 6-3

act ion
MODIFY~unit .rodify-command]let oldchar:characterumodify-command:
oldchar~newchar:character-modify-convnand:newchar

definition
if there exists linelmodify-contmand:line-to-mod=1ine

then DO-MODIFY~1ine.unit,oldchar.newchar)
else DO-MODIFY[(a linelDO-MODIFY(line,unit.

S,S)asof ever),
Lifit ,oldchar,newchir];

action
DO-MODIFY[line ,unit, character.l, character.2]

precondition 1 ine~unit: unit-contents
definition
if line:chars=character.1

then begin
delete line:chars=character.1;
insert line: chars~character.2

end:-

atomic insert myproject isa project;
insert mylibrary isa library;
insert myfile isa file;
insert ryproject:l ibrary=mylibrary:,
insert myl ibrary: file~myfile;
insert chara isa character;
insert charb isa character;
insert charc isa character;
insert chard isa character:
insert chare isa character;
insert charz isa character;
insert unita isa unit;
insert myfile: unit~unita;
insert unitb isa unit;
insert myfi le: unit=unitb;
insert unitc isa unit:

4insert myfile:unit=unitc;
insert lirea isa line:
insert linea:chars~chara;
insert 1 inea: includes-unitunitb;
insert unita:unit-contentslinea;
insert lineb isa line;
insert lineb:chars=charb;

insert unitb:unit-contentszl ineb;
insert linecd isa line:
insert linecd:chars=charc;
insert linecd:charszchard;
insert 1 inecd: includes-unit=unita;
insert un itc :unit-contents~1 inecd;
insert linee isa line;
insert linee:charszchare;

6-4 IOC TRACES

insert purgel isa purge-command;
insert purgel:current-unitaunitb;
insert updatel isa, update-command;
insert updatel:current-file~myfile;
insert updatel:update-sub-commandsupurgel;
insert delete2 isa delete-command;
insert delete2:1 ine-to-del:1inea;
insert change2 isa change-command;
insert change2:change-sub-commandsdelete2;
insert change2:current-unitzunita;
insert update2 isa update-command;
insert update2:update-sub-commands~change2;
insert update2:current-filezmyfile;

insert line3 isa line;
insert 1 ine3: includes-unit=unitc;
insert insert3 isa insert-command;
insert insert3: insert-data~line3;
insert change3 isa change-command;
insert change3 :change-sub-commands= insert3;
insert change3: current-un it=unita;
insert update3 isa update-command;
-insert update3:update-sub-commandschange3;
insert update3:current-filemyfile;

insert modify4 isa modify-command;
insert modify4:1 ine-to-modlinecd;
insert modify4 :ol dchar~charc;
insert modify4:newcharzcharz:
insert change4 isa change-command;
insert change4:change-sub-commands=modify4;
insert change4: current-unitzunitc;
insert update4 isa update-command;
insert update4:update-sub-commandschange4;
insert updete4:current-filemyfile;

insert insert5 isa insert-command;
insert insert5:insert-data:1inee;
insert chanoe5 isa change-command;
insert change5:change-sub-commands~ insert5;
insert change5:current-unitunitc;
insert update5 isa update-command;
insert update5 update-sub-commands=change5;
insert update5:current-fileniyfile;

IOC TRACE--PSL EY AMPLE 6-5

insert modify6 isa modify-command;
insert modify6:oldchar=chard;
insert modify6:newcharzchara;
insert change6 isa change-command;
insert change6:change-sub-commandsrmodify6:
insert change6:current-unit=unitc;
insert update6 isa update-command;
insert update6:update-sub-commandszchange6;
insert update6:current-file=myfile

end atomic
end..

90-gist

00"* G I S T

type "help" for command list
(re)processing declarations
3-)GTRACE(T]
T
4->init
inserting myproject isa project in cx:2
inserting mylibrary isa library in cx:2
inserting myfile isa file in cx:2
inserting myproject library = mylibrary in cx:2
inserting mylibrary file = myfile in cx:2
inserting chara isa character in cx:2
inserting charb isa character in cx:2
inserting charc isa character in cx:2
inserting chard isa character in cx:2
inserting chare isa character in cx:2
inserting charz isa character in cx:2
inserting unita isa unit in cx:2
inserting myfile : unit = unita in cx:2
inserting unitb isa unit in cx:2
insertirg myfile : unit = unitb in cx:2
inserting unitc isa unit in cx:2
inserting myfile : unit =unitc in cx:2
inserting linea isa line in cx:2
inserting linea chars = chra in cx:2
inserting linea includes-unit t unitb in cx:2
inserting unita : unit-contents = linea in cx:2
inserting lineb isa line in cx:2
inserting lineb chars = charb in cx:2
inserting unitb unit-contents = lineb in cx:2
inserting linecd isa line in cx:2
inserting linecd : chars =charc in cx:2
inserting linecd : chars = chard in cx:2
inserting linecd includes-unit = unita in cx:2
inserting unitc unit-contents = linecd in cx:2
inserting linee isa line in cx:2
inserting linee : chars - chare in cx:?
inserting purgel isa purge-command in cx:2

IF-AO2 361 UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO--ETC F/S 9/2

DESIGN SPECIFICATION VAL IDATION.f1W
'JUN 8I R M BLAZER F30602-79-C-0 042

UCA91TFTFfl RAC-TR-81-102 NL

I 2 flffllfllfflffllf

6-6 IOC TRACES

inserting purgel current-unit z unitb in cx:2
inserting updatel isa update-command in cx:2
inserting updatel current-file = myfile in cx:2
inserting updatel update-sub-commands a purgel in cx:2
inserting delete2 isa delete-command in cx:2
inserting delete2 : line-to-del z linea in cx:2
inserting change2 isa change-command in cx:2
inserting change2 change-sub-commands - delete2 in cx:2
inserting change2 current-unit = unita in cx:2
inserting update2 isa update-command in cx:2
inserting update2 update-sub-commands = change2 in cx:2
inserting update2 current-file = myfile in cx:2
inserting line3 isa line in cx:2
inserting line3 : includes-unit = unitc in cx:2
inserting insert3 isa insert-command in cx:2
inserting insert3 : insert-data = line3 in cx:2
inserting change3 isa change-command in cx:2
inserting change3 change-sub-commands = insert3 in cx:Z
inserting change3 current-unit = unita in cx:2
inserting update3 isa update-command in cx:2
inserting update3 update-sub-commands = change3 in cx:2
inserting update3 current-file = myfile in cx:2
inserting modify4 isa modify-command in cx:2
inserting modify4 line-to-mod = linecd in cx:2
inserting modify4 oldchar = charc in cx:2
inserting modify4 newchar = charz in cx:2
inserting change4 isa change-command in cx:2
inserting change4 change-sub-commands = modify4 in cx:2
inserting change4 current-unit =unitc in cx:2
inserting update4 isa update-command in cx:2
inserting update4 update-sub-commands = change4 in cx:2
inserting update4 current-file = myfile in cx:2
inserting insert5 isa insert-command in cx:2
inserting insert5 : insert-data = linee in cx:2
inserting change5 isa change-command in cx:2
inserting change5 change-sub-commands = insert5 in cx:2
inserting change5 current-unit =unitc in cx:2
inserting update5 isa update-command in cx:2
inserting updateS update-sub-commands = changes in cx:2
inserting update5 current-file = myfile in cx:2
inserting modify6 isa modify-command in cx:2
inserting modify6 oldchar = chard in cx:2
inserting modify6 newchar = chara in cx:2
inserting change6 isa change-command in cx:2
inserting change6 change-sub-commands = modify6 in cx:2
inserting change6 current-unit =unitc in cx:2
inserting update6 isa update-command in cx:2
inserting update6 update-sub-commands = change6 in cx:2
inserting update6 current-file = myfile in cx:2

5->..
charb::chars..
lineb

lineb:chars..

IOC TRACE--PS&. EXAMPLE 6-7

charb
7->. .
linecd chars..
charc
8->redo 7
chard
9->redo 7
charc
10->redo 7
chard
11->redo 7
charc
12->redo 7
chard
13->..
exists file Ifile:unit:unit-contents =linea..

(TRUE ((file .myfile)))

14->..
linee: :unit-contents..
Failed..
15->..
UPDATE[updatel]..

UPDATE:
update-command =updatel

PURGE:
unit =unitb
Failed ..
16->why

failing precondition:
not there exists including-unit:unit~line Iincluding-unit:unit-contents=

line and line:includes-unit~unit..

Variable bindings:
((unit . unitb))

17->..
PURGE[unita]..

PURGE:
unit =unita
Failed ..
18->why

failing precondition:
not there exists including-unit:unit.line including-unit:unit-contents=

line and line:includes-unitmunit..

Variable bindings:
((unit . unita))

19->..
UPDATE[update2)..

6-8 ICTRACES

UPDATE:
update-command a update2

CHANGE:
unit = unit&
change-command =change2

DELETE:
unit = unita
delete-command -delete2
deleting unita : unit-contents =linea in cx:7
DELETE completed
CHANGE completed
UPDATE completed
success
20-)..
unita:unit-contents..
Failed ...
21->..
destroy myfile..
deleting myfile isa file in cx:11
deleting mylibrary : file = myfile in cx:11
deleting vnyfile :unit = unitc in cx:11
deleting myfile unit = unitb in cx:31
deleting myfile :unit = unita in cxz11
deleting update6 current-file =myfile in .cx:11
deleting update5 :current-file = myfile in cx:11
deleting update4 :current-file = mytile in cx:11
deleting update3 :current-file = rnyfile in cx:11
deleting update2 :current-file = rnyfile in cx:11
deleting updatel :current-file =myfile in cx:11
Failed ...
22-)why

count spec constraint violation:
((current-fileofupdate-command myfile updatel)

0)

23-')?? 10 thru 20

10. redo 7
->.linecd chars

chard
11. redo 7

->.linecd :chars
charc

12. redo 7
->.linecd :chars

chard
13. ->. . exists file I file :unit :unit-contents linea

(TRUE ((file . myfile)))
14. ->.. linee ::unit-contents

IOCTRACE.-PSL EXAMPLE &9

Failed...
15. ->.. UPDATE %[updatel %]

Failed...
16. ->why

17. ->.. PURGE %[unita %]
Failed...

18. ->why

19. ->.. UPDATE %[update2 %]
success

20. ->.. unita : unit-contents
Failed...

23->..
UPDATE[updatel]..

UPDATE:
update-command = updatel

PURGE:
unit = unitb
deleting unitb isa unit in cx:14
deteting myfile : unit x unitb in cx:14
deleting linea : includes-unit = unitb in cx:14
deleting unitb : unit-contents = lineb in cx:14
deleting purgel : current-unit = unitb in cx:i4
deleting lineb isa line in cx:14
deleting lineb : chars = charb in cx:14
deleting unitb : unit-contents = lineb in cx:14
PURGE completed
UPDATE completed
success
24->..
insert lineg isa line..
inserting lineg isa line in cx:17
success
25-)..

insert lineg:chars = charb..
inserting lineg : chars = charb in cx:18
success
26->..
insert unitg isa unit..
inserting unitg isa unit in cx:19
Failed...

27->why

count spec constraint violation:
((unitoffile unitg unitg)
(1 . 1)

0)

28->..
atomic

6-10 IOC TRACES

insert unitg isa unit;
insert unitg::unit z myfile

end atomic..
inserting unit9 isa unit in cx:20
inserting myfile : unit = unitg in cx:20
success
29->..
insert unitg:unit-contents = lineg..
inserting unitg : unit-contents = lineg in cx:21
success
30->..
exists unit I UNIT-INCLUDES(unitunitg)..
(FALSE)
31->..
insert linea:includes-unit = unitg..
inserting linea : includes-unit = unitg in cx:22
success
32->..
insert unita:unit-contents = linea..
inserting unita : unit-contents = linea in cx:23
success
33->.
exists unit UNIT-INCLUDES(unitunitg)..
(TRUE ((unit unitc)))
34->redo 33
(TRUE ((unit unita)))
35->redo 33
(TRUE ((unit unitc)))
36->..
a unit

unita
37->..
a unit..
unitg
38->redo 36 thru 37
unitc
unitc
39->redo 38
unita
unitg
40->redo 38 thru 39
unitc
unita
unitc
unitg
41->?? 15 thru 20

15. ->.. UPDATE %[updatel %]
Failed...

16. ->why

17. ->.. PURGE %[unita %]
Failed...

IOC TRACE-.PSL EXAMPLE 6-1

18. ->why

19. ->.. UPDATE %[update2 %]
success

20. ->.. unite unit-contents
Failed...

A!

6-12 IOC TRACES

6.2 IOC TRACE -- CAMELOT EXAMPLE

Below is a trace of a user interacting with the IOC to explore behavior of the CAMELOT

specification. This is a specification of a process involving people and familial relationships. It was

created for the purpose of testing and demonstrating IOC capabilities.

884-Read CAMELOT.GST

93 Pretty
begin

type person(any child:person::O through 2,.sex,optional spouse:person::
optional)

bound print
by=:sex,=::child;

type sex;
always prohibited OEDIPUS+-COMPLEX there exists person

person:spouse=person:child;
always prohibited INCEST there exists person.1,person.2

(person.1::child=person.2::child)and(person.1:spouse=person.2);
always prohibited SPOUSES-OF+SAME-SEX there exists person.l.

person.2 I
.(person.1:spouse=person.2)and(person.1:sex=person.2:sex);

action
MARRY[person.l,person.2]
definition atomic insert person.1:spouse=person.2;

insert person.2:spouse=person.1
end atomic;

action
MAKECHILD[personj

precondition there exists person.1 I person:spouse=person.1
let gender:sex=a sex
definition atomic create person.3;

insert person.3:sex=gender;
insert person:childaperson.3;
insert person:spouse:child=person.3;
case gender of

male=>GISTPRINT["It's a boy!"];
female=>GISTPRINT["It's a girl!];

end case
end atomic;

action
DIVORCE[person.l,person.2]
precondition person.1:spouse=person.2

definition atomic delete person.1:spouse=person.2;
delete person.2:spousemperson.1

end atomic;

i I

IOCTRACE . CAMELOT EXAMPLE 6-13

atomic insert male isa sex;
insert female isa sex;
insert arthur isa person;
insert arthur:sex=male;
insert guenevere isa person;
insert guenevere:sex=female;
insert lancelot isa person;
insert larcelot:sex=male

end atomic
end..

94-gist

G I S T

type "help" for command list
(re)processing declarations
2->GISTPRINTDEPTH[l]
I
3->GTRTACE[T]
=GTRACE
T
4->init
inserting male isa sex in cx:2
inserting female isa sex in cx:2
inserting arthur isa person in cx:2
inserting arthur : sex = male in cx:2
inserting guenevere isa person in cx:2
inserting guenevere : sex = female in cx:2
inserting lancelot isa person in cx:2
inserting lancelot : sex = male in cx:Z

5->..
MARRY[arthur, guenevere]..

MARRY:
person.1 = arthur :sex = male

person.2 = guenevere :sex = female

inserting arthur spouse = guenevere in cx:4
inserting guenevere : spouse = arthur in cx:4
MARRY completed
success
6-)..

MAKECHILD[arthur]..

MAKECHILD:
person z arthur :sex I male

inserting perOO29 isa person in cx:7
inserting perOO29 sex 2 male in cx:7
inserting arthur : child =perO029 in cx:7

6-14 IOC TRACES

inserting guenevere :child perOD29 in cx:7
It's a boy!
MAKECHILD completed
success
7->..
arthur: child: sex
male

guenevere:child:sex
male
9->..
male: :sex..
perOO29
10 ->redo
lancelot
11->..
per0O29: :sex -

Failed ..
12->..
perOO29::child
gueflevere
13-> redo
arthur
14->redo 12 thru 13
gueneve re
arthur

male: :sex: :Child..
gueneve re
16-> redo
gueneve re
17->OK
T
95'-In

96-Next -1

j 97'-Pretty
atomic insert male isa sex;

insert female isa sex;
insert arthur isa person;
insert arthur:sex~male;
insert guenevere isa person;

insert guenevere:sex~female;
insert lancelot isa person;
insert lancelot:sexmmale

end atomic..
98-Before
relation PARENT4-1N-LAW(z:person~y:person) definition z:spouse::child~y

99+-Top

2-gist

IOC TRACE - CAMELOT EXAMPLE 6-15

G 6 -S T

type "help" for command list
(re)processing declarations

18->GUNTRACE[T)
NIL
19->arthur: spouse

u.b.a.
arthur: spouse
20-)..
arthur:spouse
Failed ...
21->UNDO 16
redo undone.
22-)..
arthur: spouse
gueneve re
23->..
exists pl:person.p2:personIPARENT-IN'-LAW(pl,p2)..
(FALSE)
24->..
MARRY[lancelot,arthur:child]..

MARRY:
person.1 =lancelot :sex = male

person.2 = per0029 :sex = male
::child = arthur

gueneve re

inserting lancelot :spouse perOO29 in cx:10
inserting perCO29 :spouse lancelot in cx:10
Failed ...
25->why

Constraint Violation:
always prohibited SPOUSES-OF.-SAME.-SEX there exists person.1,

person.2
(person.l:spouse=person.2)and(person.l:sex=person.2:sex)..

Variable bindings:
((person.1 . lancelot) (person.2 . perD029))
NIL
26->..
MAKECHILO[arthur]..

MAKECHILO:
person z arthur :sex = male

inserting perC03l is& person in cx:12
inserting perOO3l sex zmale in cx:12
inserting arthur child *perOO31 in cx:12
inserting guenevere : child *perOO31 in cx:12

6-16 ,IOC TRACES

It's a boy!
MAKECHILD completed
success

27->redo

MAKECHILD:

person z arthur :sex = male

inserting perOO32 is& person in cx:15
inserting perO032 sex female in cx:15
inserting arthur child per0032 in cx:15
inserting guenevere : child = perOO32 in cx:15

It's a girl!
MAKECHILD completed
success
28->..
exists p1:personp2:personIPARENT-IN-LAW(pl,p2)..
(FALSE)
29->..
MARRY[lancelot,arthur:child].,

MARRY:
person.1 lancelot :sex = male

person.2 per0032 :sex = female
::child = arthur

guenevere

inserting lancelot spouse per0032 in cx:18
inserting per0032 : spouse = lancelot in cx:18
MARRY completed

success

30->..
exists p1:person.p2:personiPARENT-IN-LAW(pl,p2)..
(TRUE ((p1 . lancelot) (p2 . guenevere)))
31->redo
(TRUE ((pl , lancelot) (p2 . guenevere)))
32->..
loop (a personIPARENT.IN-LAW(lancelot,person)) do GISTPRINT[person]..
guenevere :sex = female

arthur :sex = male

success

"..

7-1

7. DESIGN FOR A GIST SPECIFICATION
VALIDATION FACILITY

7.1 OBJECTIVE

The objective of a Gist Specification Validation Facility will be to determine the feasibility of

validating a functional specification, treated as an oprational system prototype, through observation

of its behavior on both concrete and symbolic cata. Existing technology will be extended to develop

and demonstrate a prototype tool which aids a system design specialist in generating, documenting,

and validating operational (executable) software requirements specifications.

7.2 BACKGROUND

Formal specifications act as a contract between clients and implementors. Since the

implementation costs are so high and the implementation delays so long, it is crucial that the formal

specification accurately portray the client's needs. Much time, money, and effort has been wasted

because of mismatches between specifications and client needs.

This effort attempts to mitigate this problem by developing a methodology for using formal

specifications as system prototypes and validating them through observation of their behavior

produced by symbolic evaluation.

There are two key technical aspects to this approach. First, the creation of a high-level formal

operational specification language and an interpreter of tnat language. This enables the formal

specifications io be used as a prototype. Second. a symbolic evaluator of this formal specification

language which enables entire classes of test cases to be explored simultaneously. Such collapsing

of the space of test cases for the prototype, enables it to be "exhaustively" tested to ascertain

whether it meets client needs.

Both of these capabilities exist in rudimentary form in the SAFE project at ISI, and their extraction

from SAFE and extension are the foundation of this effort. Under this contract we have provided the

first of these two required capabilities: the creation of a formal operational specification language and

an interpreter of that language (see Chapters 2 and 5). An initial operating capability (IOC) exists (see

Chapter 5) which allows a user/analyst to enter input data required by a formal specification

(prototype) and "run" the prototype, monitoring selected events or breaking upon specified

situations, as with normal DDT.like debuggers, except that all interactions are at the conceptual

specification level, rather than the low-level representation-dependent implementation level.

7-2 DESIGN FOR A GIST SPECIFICATION VALIDATION FACILITY

Since symbolic evaluation is so central to this effort, we will explain it in more detail here before

describing our approach. The purpose of symbolic execution is to expose the behavior of a

specification on a class of inputs rather than just on a single test case as would occur with a normal

(nonsymbolic) evaluator. This capability arises from the ability to recognize assumptions implicit in

the specification and to incorporate them as fuller descriptions of the incomplete (symbolic) inputs,

and from the ability to explore all conditional paths in the specification and to annotate the behavior

of such paths with their conditionality.

The size of the class o? test cases being explored by a symbolic execution depends upon the

degree of "symbolicness" of the input and initial data base description, and upon the amount of

refinement provided by the user/analyst during the symbolic execution. "Symbolic" and "Concrete"

should be recognized as the endpoints of a spectrum of degrees of completeness of description. At

the concrete endpoint, the description of the input (and initial data base) is complete so that all

information required during evaluation is already present. Therefore evaluation can proceed in a

normal (nonsymbolic) manner, with data accessed as needed and conditional branching determined

by the available concrete data. A single test case execution results.

As the description of the input (and initial data base) becomes more symbolic (incomplete), some of

the information needed during evaluation is not available. One of two options must be selected

before evaluation can proceed:

1. The needed information is provided (dynamically) by the user/analyst.

2. The needed information is treated "symbolically" so that its presence and value are
unknown and the full conditionality of the specification (with respect to this needed
information) is explored.

With the first option, the symbolic evaluation is being used to incrementally define a test case, or

class of test cases, of interest. The symbolic evaluation, rather than the user/analyst, determines

what information is relevant for the definition of different test cases.

With the second option, a class of test cases being simultaneously explored is formed. The more

thiB option is employed, the larger the class of test cases becomes. However, the complexity o the

behavior of the specification on that class of test cases also rises proportionately so that

understanding that behavior becomes correspondingly more difficult.

Thus a balance must be struck between reducing the number of classes of test cases to explore

and increasing the complexity of behavior of the specification on those classes. For this reason, the

BACKGROUND 7-3

symbolic evaluator will be interactive so that the user/analyst can control the definition of test cases

class size and their corresponding complexity.

A short example may help clarify these issues. The example is taken from the Program Support

Library, that we have formally specified under this contract (see Chapter 3). Let's assume that we

want to test the specification's behavior on insertion of lines into an existing unit. We therefore create

a symbolic command leaving unspecified: the sequence of lines to insert, the unit into which the

insertion is to be made, and the specification of the location at which the insertion is to occur.

However, since we are only interested in the insertion behavior, we concretely specify the command

type as an insertion command. With this set of choices the initial data base is merely the symbolic

command that we've created and it is passed as the input to the specification.

We now start the symbolic execution. The specification first determines what type of command is

being processed. Since this is concretely specified as an insertion command, execution proceeds

normally. Next, the specification attempts to access the unit specified in the command. Since this

was unspecified, the symbolic evaluator asks the user/analyst whether he wants to make a concrete

choice or not. If the user/analyst chooses to supply a concrete unit, then he either specifies an

existing one (we have assumed that none were predefined in the initial data base) or creates a new

one specifying whatever attributes he desires. Such dynamic specification of concrete data is simply

a need driven incremental definition of the initial data base. On the other hand, if he doesn't want to

supply a concrete unit, the system will create a new symbolic unit and proceed.

After several more information-gathering steps similar to the one above, the symbolic evaluator

reaches the crucial step for this class of test cases--whether the insertion point exists within the

sequence of lines which constitute the contents of the unit. If both the sequence and the insertion

point are concrete. then the insertion point either is in the sequence or not, and this can be

determined by normal evaluation. On the other hand, if either or both values are symbolic, there is no

way to make this determination. In such situations, the user/analyst is asked which of three options

should be explored.

1. Pursue the TRUE branch of the predicate by constraining the symbolic value(s) so that
the preoicate would be TRUE.

2. Pursue the FALSE branch of the predicate by constraining the symbolic value(s) so that
the predicate would be FALSE.

3. Pursue both branches Dy leaving the decision symbolic. This enlarges the class of test
cases being explored.

7-4 DESIGN FOR A GIST SPECIFICATION VALIDATION FACILITY

Let's assume that the third option is selected by the user/analyst. The symbolic evaluator would

then pursue branches separately by suitably constraining the symbolic value(s) in each branch. The

activity of each branch would be marked by the conditionality of the predicate so that after the

branches joined, the system could determine the conditionality of the respective behaviors and thus

their interaction with later activity.

In this specific case, this dual exploration is pa~ticularly simple since ane branch terminates in an

error (the insertion point is not within the contents of the unit) and thus the branches do not rejoin.

It's quite evident that as the size of the class of test cases being explored grows, the difficulty of

clearly explaining this behavior in terms of the internal branch points increases. We expect such

explanation capabilities to be the major portion of this effort.

7.3 APPROACH

This two-year effort will build upon the foundation established by the existing contract via a

continued phased introduction of capabilities from the SAFE project to extend the IOC into the

symbolic evaluation-based specification validation facility required.

First, SAFE capabilities to record and interrogate execution behavior will be integrated into the IOC.

This is necessary because the existing IOC only maintains a dynamically changing "current state" of

the world being modeled in the relational data base. Since we are interested in explaining the

behavior of the system (i.e., its sequence of actions) which produced some final state. rather than

merely describing the final state, recording and saving the intermediate activity is crucial. Such

recording produces a data base of behavior which can be accessed to provide summarized

descriptions of activity used to validate the specification. To obtain such summarized descriptions, a

tool which interrogates this data base and organizes the information it contains into activity

summaries (explanations of behavior) must be built. This is the major new research proposed under

this contract, To gain experience with creating such summaries and to provide a fallback position in

case such automatic activity summarization proves infeasible, a set of interactive user/analyst

commands for examining the recorded behavior will first be provided.

At this point, a capability would exist for validating formal operational specifications by analyzing

their behavior on concrete test cases. But even at the specification level, the number of concrete test

cases that would have to be explored to adequately validate the specification is overwhelming. This

difficulty can be overcome by integrating the symbolic execution capability from the SAFE project into

this validation facility (as an extension to the language interpreter) and extending the summarization

capability to include the symbolic data in the recorded behavior.

APPROACH 7-5

7.4 PLAN

The history recording and interrogation facility from the SAFE system will be extracted and

integrated into the IOC. This facility records execution behavior and provides low-level operations

for examining this behavior. Then, a set of high-level user (analyst) commands for examining the

recorded behavior will be provided. These commands should provide the ability for the user to move

back and forth in the history by describing desired states (via GIST specification language

predicates). These commands should also provide the analyst with the ability to determine which

portions of the specification are responsible for each piece of behavior.

Next a tool which analyzes a recorded history and provides a summary description will be built.

This tool will use the structure of the specification and rules of program description to summarize the

recorded behavior.

Then, the symbolic execution package from SAFE will be extracted and modified so that it

interactively receives guidance from the user/analyst as to which execution paths to explore. A

bookkeeping facility to keep the user/analyst informed as to which paths have been explored and

which have not yet been explored will also be provided.

Finally, the automatic summarization tool will be extended to include descriptions of symbolic

behavior.

4

11

Appendix I
GIST GRAMMAR

Below is the grammar of Gist used in generating the IOC. The form of the grammar is that accepted

by the POPART system. The grammar is context free, represented as a series of productions of the

form

nonterminal := rewrite

with the following conventions:

" The rewrite for a nonterminal symbol is a sequence of nonterminal symbols and terminal
symbols.

" Terminal symbols are preceded by a quote mark (').

" Alternative rewritings of a nonterminal are separated by bars (I)-

" Lines of the form

NOTE ...;

are comments about the grammar, not productions of the grammar.

* Optional constituents are enclosed in braces {).

" The nonterminal LEXEME is predefined to allow any sequence of letters and digits as its
rewrite.

" A rewrite of the form

nonterminal I> predicate

indicates that subset of rewrites of the nonterminal which satisfy the named unary
predicate. The predicates are not documented here.

NOTE I Declaration section;

DeclarationStatement := IndividualDeclaration

{ LocalDefinitions)
{ IndividualDefinition }
{ ConstrainingDeclarations };

IndividualDeclaration TypeDeclaration
BoundaryDeclaration
RelationDeclaration I
ProhibitDeclaration
RequireDeclaration I
DerivationDeclaration I
ActionDeclaration I
DemonDeclaration

LocalDefinitions :z 'let LocalDefinition t

1-2 GIST GRAMMAR

LocalDefinition ::Role 'z ObjectExpression;
IndividualDef inition := 'definition (Statement IPredicate TypeExpression

ObjectExpression)

ConstrainingDecl arat ions :- 'where DeclarationOrCoiment t '(';)'end;

DeclarationOrComment := DeclarationStatement I CommentStatement

BoundaryDeclaration :='boundary { Name)BoundarySpecification;
BoundarySpecification :=Linkage

Linkage := LinkClass Link;
LinkClass :=EquivalenceName Predicate
EquivalenceName :=' 'equiv I 'iden-tical

Link := AttributeRelationship AttributeName;
AttributeRelationship := ': I':::

TypeDeclaration ::'type {Name) { '(AttributeSpec ' ,'

{TypeRelationQualifier +

AttributeSpec :={CountSpec) AttributeName
{': TypeExpression)(':CountSpec# 1

AttributeName RoleName ;
CountSpec :=CountSpecConstant I IntegerRange I Integer

NestedCountSpec:
IntegerRange := Integer 'through Integer#;
NestedCountSpec :2'(CountSpec t~ ', ');

CountSpecConstant :2'unique I 'optional I 'multiple I'any;
TypeRelationQualifier :zTypeQualifier I RelationQualifier
Name := LEXEME J> Identifierfilter
Identifier := LEXEME 1> IdentifierFilter
TypeExpression :~TypePrimitive;

TypePrimitive :=StructureSpecification

SetTermI
Decla rat ion Statement

StructureSpecification := StructureType 'of TypeExpression;
StructureType := Predel'inedStructure Identifier

PredefinedStructure := 'set I'sequence

RelationDeclaration :2'relation (Name } (Role 't')
{RelationQualifier +}

Role := RoleName { :TypeExpression}

RoleName :=Identifier ('. Distinguisher}

Distinguisher := IntegerConstant IIdentifier
IntegerConstant := LEXEME 1> Integer?
Integer := LEXEME 1> Integer?;

Prohibit~eclaration :~'always 'prohibited (Name) Predicate;

RequireDeclaration :~'always 'required (Name)Predicate:

DerivationDeclaration :* 'derivation { Name } (Role T' '

'whenever Predicate 'conclude Pattern t '

Acti onDecl arat ion :~'action (Name) { '~ (Role t',)')
{ActionQualifier +}

1-3

ActionQualifier := ActionPrecondition
ActionPostcondition

ActionPrecondition 'Precondition Predicate;
ActionPostcondition :2'postcondition Predicate;

DemonDeclaration :='demon { Name) '(Role t
'trigger Predicate
'response Statement

NOTE 2 Statement definitions;

Statement :=DeclarationStatement

RequireStatementI
ProhibitStatement
DataPrimitiveStatementI
AtomicStatementI
BlockStatementI
ConditionalStatement
CaseStatement I
ActionInvocationI
LoopingStatement
CommentStatement
ContinuationStatementI
AttemptStatementI
ChooseStatement
TogetherStatement

RequireStatement 'require Predicate;

ProhibitStatement 'prohibit Predicate:
DataPrirnitiveStateient := DataInsertion I DataDeletion DataUpdate

ObjectCreation I ObjectDestruction I ObjectCopy

DataInsertion '2insert {All)Pattern;
DataDeletion 'delete {All)Pattern;
DataUpdate := 'update (All }(AttributeRelationship)

RoleName OfExpressionOrRelation 'to Expression;
OftExpress ionOrRel at ion :='in Relationship I 'of ObjectExpression

ObjectCreation := 'create CreationSpecification t~
{ 'with Pattern);

CreationSpecification := RoleName { 1: NameOrPattern }{'wrt Boundary);
NameOrPattern := Pattern IRoleName ;

Pattern := Identity I Containment I Relationship
ObjectDestruction := 'destroy (All) ObjectExpression ('wrt Boundary)
ObjectCopy := 'copy CreationSpecification t~

All := 'all;

AtomicStatem-ent :2 'atomic Statement 1 '; 'end 'atomic;
BlockStatement := 'begin Statement t '; 'end:

ConditionalStatement :* 'if Predicate 'then Statement
(ElselfClause +) { 'else Statement#)

CaseStatement :- 'case ObjectExpression 'of C-aseCase ';(;)

'end 'case;:
CaseCase :* ObjectExpression 'a) Statement:

1-4 GIST GRAMMAR

ElselfClause := 'elseif Predicate 'then Statement;
LoopingStatement ::'loop SetOrSequenceExpression 'do Statement;
CommentStatement :='comment AnythingButEnd + 'end 'comment
AnythingButEnd 2LEXEV4E 1> AliButEnd;

ContinuationStatement := 'continuations 'of Statement
'from 'which Expression
'satisfies Predicate;

AttemptStatement :2'attempt Statement t '
ActionInvocation :2Name '[{ Expression t ',) ']:
ChooseStatement :~'clIose Statement 'r '; 'end 'choose-,
TogetherStatement :='together Statement ir' 'end 'together;

NOTE 3 The extensions section;

TypeQualifier :=BoundaryDefault TypeEmbedding
EquivalentForm

Bounary~faul :='bound BoundaryOp t~ ', 'by Boundary;
Boundary~p :='copy I 'destroy I 'restore 'contains I'equiv
Boudar~efult'modify I'all;

Boundary := BoundarySpecification IName

TypeEmbedding := TypeConnector 'of '(TypeDeclarationBody t :'

TypeConnector := { CountSpec) Supertype I Subtype;
Subtype := 'subtype;
Supertype :='supertype;

EquivalentForm LinkClass;

RelationQualifier :=KeySpecification I CoversSpecification
RelationMapp'fngProperty

KeySpecification 'key KeyRoles;
KeyRoles :- Role I '(ObjectExpression t'.'

CoversSpecification :='covers Roles;
Roles := Role I'(Role t~ ', ');

TypeDeclarationBody := Name {'(AttributeSpec t','
(TypeRelationQualifier +)
{LocalDefinitions}
{IndividualDefinition)
{ConstrainingDeclarations)

RelationMappingProperty :='onetoone 'onto I'reflexive
'transitive I 'symmetric ('antisymmetric
nonrefiexive

NOTE 4 Expression language;
Expression := ObjectExpression
SetOrSequenceExpression := SetExpression I SequenceTerm
ObjectExpression :~SelectedExpression I SetExpressionI

SequenceExpression IArithmeticExpression
SharedExpress ion

SharedExpression :=SharedFactor

SharedFactor :- SharedSecondary ('asof Duration}
SharedSecondary :z (OldConstant }SharedPrimary
OldConstant 2'old;

SharedPrimary :zSharedPrimitive
(Selectors)

Selectors :zSelector.+

Selector AttributeRelationship AttributeName;
SharedPrimitive FunctionCall I SpecialSymbol I

NestedObjectExpression IVariable

FunctionCall :=Identifier '({ObjectExpression t ',)'
SpecialSymbol ValueSelectedSymbol I WildCardSymbolI
ValueSelectedSymbol
WildCardSymbol '

NestedObjectExpression '(ObjectExpression '
Variable :=RoleName

SelectedExpression SequenceSelection I GeneratorSelection
NondeterniinisticSelection I OptimalSelection

SequenceSelection RandomSelection I FirstElement I LastElement
RandomSelection SequenceTerm 'sub ArithmeticTerm
FirstElement 'first SequenceTerm;
LastElement 'last SequenceTerm;

GeneratorSelection :=GeneratorTerm LastWord ObjectExpression;
LastWord :='afterwards I'lasttime

tNondeterministicSelection Determiner Role { ~Predicate
Determiner :='a I 'an 'any I 'one I'the

OptimalSelection OptimizingWord ObjectExpression 'wrt Order;
OptimizingWord 'maximal I'minimal

NOTE Set expression subgramnar;

SetExpression :=SetTerm 1> RejectSharedExpression
SetTerm :zSetFactor (DifferenceSetTerm)

DifferenceSetTerm '- SetTerm;
SetFactor :=SetSecondary { UnionSetFactor)

UnionSetFactor :='union SetFactor
SetSecondary :=SetPrimary j IntersectSetSecondary)

IntersectSetSecondary 'intersect SetSecondary
SetPrimary { Po~erset)SetPrimitive

Powerset 'powerset
SetPrimitive :=EnumeratedSet I SetRestriction GeneratorTerm

EhumeratedSet :='j ObjectExpression t ', ')
SetRestriction :x'(Role 'I Predicate '

NOTE Sequence Expression subgrammar;

SequenceExpression :=SequenceTerm 1> RejectSharedExpression
SequenceTerm := SequenceFactor { ConcatenateSequenceTerm)
ConcatenateSequenceTerm :=' SequenceTerm;

SequenceFactor :=SequenceSecondary (LimiterSequenceFactor)
LimiterSequenceFactor := Limiter SequenceFactor;
Limiter :- 'before I 'beyond;

SequenceSecondary :=EnumeratedSequence IString
Gene ratorTerm

EnumeratedSequence :='< ObjectExpression t~
String :a LEXEME 1> CollectString;

GIST GRAMMAR

NOTE Generator expressions subgrammar;

GeneratorExpression := GeneratorTerm 1> RejectSharedExpression
GeneratorTerm := GeneratorFactor (TogetherGeneratorTerm}
TogetherGeneratorlerm := Together GeneratorTerm
Together := 'with I cross;

GeneratorFactor := GeneratorSecondary f GeneratorSuffixes
GeneratorSuffixes :2GeneratorSuffix + ;

GeneratorSuffix PredicatedFilter IEncodingFilterI
NamingFilter ISequenceTerminatorI
Accumulation Remainder ISubsequenceSelection

PredicatedFilter :~SuchthatOrUnless Predicate;
SuchthatOrUnless :='suchthat I 'unless

EncodingFilter := 'obtain ObjectExpression
NamingFilter :='named Variable {CommaVariable + 'respectively)
CommaVariable :a ' Variable

SequenceTerminator :2TerminatorWord Predicate;
TerminatorWord :'while I 'until;

Accumulation ' initially ObjectExpression)
'accumulate ObjectExpression#

Remainder := 'ungenerated I rest;
SubsequenceSelection := DurationWord Predicate;

Dur-ationWord :~'before I'through 'after I 'beyond
Gene ratorSecondary :2PrimitiveGenerator IPrimitivePatternGenerator

SharedExp ress ion;
PrimitiveGenerator := 'from ObjectExpression 'by ObjectExpression#;

PrimitivePatternGenerator := SequenceTerminator

NOTE Arithmetic expression subgrammar;

ArithmeticExpression :=ArithmeticTerm 1> RejectSharedExpression
ArithmeticTerm := ArithmeticFactor { PlusArithmeticTerm
PlusArithmeticTerm :=PlusOp ArithmreticTerm;
PlusOp : '+ ' -

ArithmeticFactor := ArithmeticSecondary (MultiplyArithmeticFactor)
MultiplyArithmeticFactor :~MultOp ArithmeticFactor
MultOp := x I'/ I'div 'mod;

ArithmeticSecondary :~{ArithmeticPrefixes)ArithmeticPrimary
ArithmeticPrefixes :~ArithmeticPrefix +
ArithmeticPrefix := I~ '- I 'ceiling I'floor I 'absolute

ArithmeticPrimary := ArithmeticPrimitive {ExponentArithmeticSecondarys
ExponentArithmeticSeconderys :=ExponentArithmeticSecondary +
ExponentArithmeticSecondary :2'** ArithmeticSecondary

ArithmeticPrimitive := Integer ISharedExpression

NOTE Predicate expression subgramnar:

Predicate := QuantifiedLogical I DurationPredicate ILogicallmp
QuantifiedLogical := { Not) QuantHead Predicate;
QuantHead :z ExHead I UnivHead;

ExHead :- ('there)'exists QuantifierRole t',I
UnivHead := { 'for)'all QuantifierRole t'
QuantifierRole :a Role;

DurationPredicate :~{Not) AiwaysOrNever Predicate 'throughout Duration;

1-7

AlwaysOrNever :x 'always I 'never
Logicallmp := LogicalTerm ('implies Logical Imp)
LogicalTerm :- Logicalfacto' (OrLogicalTerm)
OrLogicalTerm :x Or LogicalTerm

LogicalFactor :- LogicalSecondary ('and LogicalFacto-
Or :- 'or I *xor

LogicalSecondary ::{LogicalPrelixes) LogicalPrimary
LogicalPrefixes :~LogicalPrefix +:
LogicalPrefix :~Not IOldConstant

Not := 'not I'
LogicalPrimary :z Proposition ('asof Duration}

Proposition := LogicalConstant IInfixRelation
Relationship 1 NestedPredicate

LogicalConstant := 'TRUE I'FALSE I 'true I 'false;
InfixRelation := ObjectExpression ComparisonSuffix
ComparisonSuffix :OrderingRelation OptimizationRelation

IdentityRelation IContainmentRelation
OrderingRelation :2{Immediately

OrderingRelationConstant ObjectExpression

{ 'wrt Order}
Immediately := 'immediately;
OrderingRelationConstant :'('ftie
Order := Identifier;

OptimizationRelation :~Optimizes ObjectExpression
('wrt Order);

Optimizes '~minimizes I'maximizes
Identity := ObjectExpression
Relationship :~FunctionCall;
Containment :~ContainmentNamne

(ObjectExpression ITypeExpression)
ContainmentName := ElementName I ProperSubSuperSet

ProperSubSuperSequence;
ElementName := 'contains I'in I'isa I'isan

ProperSubSuperSet := (Proper) SubOrSuperSet
ProperSubSuperSequence := (Proper) SubOrSuperSequence

SubOrSupepSet := 'subset I 'superset
Proper := 'proper
SubOrSuperSequence := 'subsequence I'supersequence

tRestedPredicate := '(Predicate '

Duration :~GeneratorTerm

.1.

Appendix II
GIST SPECIFICATIONS

Within this appendix:

comments to explain language features are surrounded by !

comments to explain modeling of the task are surrounded by

11.1 SOURCE DATA MAINTENANCE SPECIFICATION

1.1.1 . Type definitions for objects of domain °

tb=Q project(LIBRARY :anv ::uniQ , CLASSIFICATION)
bound contain y :LIBRARY
bound restor y= :CLASSIFICATION,

:LIBRARY,

t"= fibrary(FILE :._v ::uniaue)
b contains, restore I& = :FILE;

tv~e file(UNIT :anv ::unioue , PASSWORD :optional)
bound Contain y :UNIT
bound restor by UNIT,

= :PASSWORD;

unit(UNIT.CONTENTS I secuenC f line, PROGRAMMER,
UNIT.KEY I key :ootional, SOURCE-LANGUAGE I language :oQioj)

bou contains by :UNIT-CONTENTS
restorey a :UNfT-CONTENTS,

= :PROGRAMMER,

= :UNIT-KEY,

= :SOURCE-LANGUAGE,

Sline(CHARS I seauence f character, LINE-INCLUDES-UNIT I essence f unit :Lny)
bound restore by :CHARS,

= :LINE-INCLUDES-UNIT;

tepasswordo; teprogrammero; tv&Ianguage(;
y key(: b= classificationo:

1

11-2 GIST SPECIFICATIONS

If. 1.2*' Static constraints on the world *

*These constrain the possible states of the world (without reference to changes in
the world, hence 'static').

always required UNIT- LINE- LENGTH- CONSTRAINT
-*All lines in units are of length Card-Length"*

V line 11 MEMBER($:UNIT-cONTENTS,S,Iine) ~ lenth(line:CHARS) =Card-Len gth-j

always prohibited
~A line may not occur more than once in the unit-contents sequences

3 unit, integer.1 nlegen.2
MEMBER(unit:uNIT-CONTENTS,integer.l,5) =MEMBER (unit: uNITCONTENTS,integer.2,)

always prohibited
A line may not be shared between units

3 unit .1 , unit .2 11
MEMBSEA(unit. I:LNIT- CONTENTS, $, 0)=MEMBER (umf2: UNIT- CONT-ENTS, $,6):

Inclusion of units may not be 'circular' - define a relation and derivations to model
inclusion between units***

relation LINIT- INCLUDES-LJNIT(includor I unit , included I unit);

derivation DERIVE- UNIT-INCLU DES-UNIT(unit-a Iunit ,unit-b I unit)
' If a line in un it-a includes unit-b. derive that unit-a UNIT- INCLUDES- UNIT unit- b
whenever 3 line 1j M EMBER (u nit-a: UNIT. CONTENTS $,line) A (/ine:LINE- INCLUDES- UNIT = unit-b)
cocld UNIT-INCLUDES-UNIT(unit-a,unit-b);

derivation DERIVE-TRANS-CLOSU RE-UNIT-INCLU DES- UNIT(un't-a Iunit. unit-c I unit)
Form transitive closure of UNIT- INCLUDES- UNIT

whenever 3 unit-b I unit 11
UNIT- INCLUDES -UNIT(uni!-a.unit-b) A UNIT- INCLU DES-UN IT(unit-b,unit-c)

cocu UNIT-INCLUDES-UNIT(unit-a,unil-c);

Now prohibit any circular UNIT-INCLUDES-UNIT
alwav' prohibited 3 unit II UNIT- INCLU DES- UNIT(unit,unit);

11-3

11.1.3 " User commands °

We have chosen to model user commands as a sequence of objects through which

the system iterates (an alternative would have been to expect the world to invoke the
appropriate action for each user command).

SI de-spec is introduced to connect a file reference with a password """
t= file-spec(FLE, PASSWORD :Optional) ;

Definitions are indented to display the type hierarchy of the commands

Scommando suoertvoe o
< update-command; copy-file-command; backup-command; restore-command >;

L=e update-command(CURRENT.FILE.SPEC I file-spec,
UPDATE-SUB-COMMANDS I seauence of update-sub-command);

tyQ update-sub-command(CURRENT-UNIT I .sse.c f unit, UNIT-KEY I key :optional) suoerty 9f
<add-command purge-command; replace-command;

copy-unit-command ; change-command >;

t add-command(DATA I sequence of line, SOURCE-LANGUAGE I language :otional;

L= purge-commando;

!Y= replace-command(DATA I Lcre pf line)

ty~e copy-unit-command(FROMUNIT I e 2f unit, FROM-FILE-SPEC I file-spec :optional);

tve change-command(CHANGESUBCOMMANDS I seouen ce gf change-sub-command);

! type temporary-charge-command yQf < change-command >

ty2 change-su bcommand(sugertyp 21
<insert-command delete-command; shift-command
modify-command ,copy-lines-command replace-line-command>

11-4 GIST SPECIFICATIONS

1= ~inse rt- command (DATA a~unc - line, SEQUENCE-LOCATION :Optional~

bm ~delete- command(LINES esnce 9- segnce W line);

shift -command (LINES I~ essnc 211.tecflQ line, COLUMNS Iinteger);

IY ~ mod ify- command (LINES I esec gf a~gn f line,
NEW-STRING I seunc ! character,
STARTING-COLUMN I integer :optionl,
OLD-STRING I seflnc 2 character :optiona)

f copy- lines-command(FROMUNIT I esec.~ unit,
LINES I esec 2!f seue QIf line,
SEQUENCE-LOCATION, FROM-FILE-SPEC I file-spec :optional'i

rep lace- line command (OLDLINE I esec 2f line, NEWLINE I line);

Jy? copy-file-command(TO-FILE-SPEC I file-spec, FROM-FILE-SPEC I fIle-spec);

tyg backup- command(OBJECT Iessence 2f project U library U file);

ty~ restore-command(BACKUP-STATE I state,
OBJECT Iesn of~ project U library U file U unit);

Note that some of the names of the above commands, and the actions that are to
perform them, do not correspond to the user command names given in the English
specification. These changes are intended to clarify the action of the named commands.
COPY has become COPY-LINES
MOVE has become COPY-UNIT
MERGE has become COPY-FILE
Whereas previously providing sequenced numbered data lines in a CHANGE command
implicitly caused insertion or replacement of lines, now these changes are achieved by
giving explicit commands INSERT and REPLACE-LINE.

11-5

11.1.4 " Dynamic constraints on the world ""

always prohibited INCLUDED-UNIT-DELETION
* " * A unit may not be deleted if it is included anywhere
3 dead-unit I ej. 2f unit U

destroyed c-ad-unit A UNIT-INCLUDES-UNIT($,dead-unit);

always reauired UNIT- KEY-CHECKING
" May not make changes to a keyed unit without having provided the correct

key in the current command, except when performing RESTORE or
RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE. 0*0

3 changed-unit Ie!2f unit II
(destroyed(unit) V modified(unit)) A 2!d { 3 key = unit:UNIT-KEY)) A

- (RESTORE[S] V RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE[$])
3 command, event II

active event A (oarameterof(event) = command) A command:UNIT-KEY = key;

always reauired PASSWORD-CHECKING
• May not access any part of a password-protected file without having provided

the correct password in the file-spec, except when performing RESTORE or
RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE. °""

(3 file 11 access(fie) A 3 password II password = file:PASSWORD) A
- (RESTORE[$] V RESTORE. UNITS.TEMPORARILY.CHANGED.SINCE[$])

3 command, event, file-spec II
active event A (oarameterof(event) = command) A command contains file-spec A
(fi/e-spec:FILE fi.'e) A (file-spec:PASSWORO = password);

",1

It
t4

Il-B GIST SPECIFICATIONS

11.1.5 Interface with user

d USER-INTERFACE(commands)
trigger * Place here user activity to provide commands and initiate processing "°"
r SOURCE-DATA-MAINTENANCE(commands);

11.1.6 Actions to perform commands ...

11.1.6.1 SOURCE-DATA.MAINTENANCE

action SOU RCE-DATA.MAINTENANCE[commands I seouence 2f command]
definition

over commands namd corn

SAttempt
on com of

update-command => UPDATE[com];

copy-file-command =) COPY.FILE[com];

backup-command =) BACKUP[com];

restore-command => RESTORE[com];

n ;•

k

-
*1 i i II L _

l11-7

11.1.6.2 ° UPDATE "*

action UPDATE(updete-command]
let file = updatecommand:CURRENT.FILE.SPEC:FILE
definition

over update-command:UPDATE. SUB-COMMANDs named up-corn

require 3 current-unit I essence of unit II current-unit = Up-coM:CURRENTUNIT;
attenDt

-C= up-com of

add-command => ADD(current-unit, file, up-com];

purge-command => PURGE[current-unit);

replace-command => REPLACE[current-unit, fite, up-com];

copy-unit-command => COPY-UNIT[current-unit,file,up-com];

change-command =) CHANGE[current-unit, up-corn];

end

11.1.6.3 * ADD*

action ADD[unit I ess2nce f unit, file, add-command]
definition
t egin.

atomic
Create unit, copy-of-lines I seguence gi line 11

copy-of-lines = add-command:DATA A
unit: UNIT. CONTENTS = copy-of-lines;

nSr file:UNIT = unit

nd atomic;
if 3 key I key add-ccmmand:UNIT.KEY then o unit:UNIT-KEY key

11-B GIST SPECIFICATIONS

11,1..4 PURGE

action PURGE[unit]
definition destroy unit;

11.1.6.5 REPLACE"

action REPLACE(unit 9 f unit, file, replace-command]
!et data I j f line a replace-command:DATA
definition * If referenced unit already exists, replace its contents,

otherwise create a new unit. °

if 3 unit
then beUan

g new-lines I sauence g_ line j[new-lines rw data;
W :UNIT-CONTENTS f unit tO new-lines

add-command II add-command:DATA = data;
ADD[unil,file,add-command)

11.1.6.6 COPY-UNIT

action COPY-UNIT[unit I es unit, file, copy-unit-command]
definition

atomic
crate unit j1 unit M from-unit;
in= file:UNIT = unit

. .. , , II .

11-9

|1.1.6.7 CHANGE

action CH1NGE[unit, change-command]
definition

over change-command:CHANGE-SUB-COMMANDS named ch-com

ag attemo
r'= ch-com pf

insert-command => INSERT[unit,ch-com];

delete-command => DELETE[unit,ch-com];

shift-command => SHIFT[ch-com];

modify-command => MODIFY[ch-com];

copy- lines-command => COPY-LINES[unit,ch-com];

replace-line-command =) REPLACE-LINE[unit,ch-com];

end case :

11. 1.6.8 INSERT

When inserting lines into a unit, we may either explicitly say where the insertion is to

take place. or by default let the lines be inserted after the last position of change to that
unit (during the cur-ent CHANGE command), or at the start of the unit if there has been no
such change.

To find the last position of change we define two relations. LATEST-STATE-OF-
CHANGE(unit,state) relates a unit to the latest state (since starting execution of CHANGE)
at which the unit contents then differ from the unit contents now. LATEST.POSITION-OF-
CHANGE relates the unit to the position of this change.

relation LATEST-STATE-OF-CHANGE(uNIT, CHANGESTATE state)

definition
changestate la= some state 11 unit:UNIT.CONTENTS - (unit:UNIT.CONTENTS as Qf state) A

state after lts start CHANGE(unit,];

1110 GIST SPECIFICATIONS

relatio LATEST- POSITION. OF- CHANGE(unit , sequence-location)
definition

3 changest ate I state, lo ngest-sa me -bottom I euec 2f line
longest-same -bottom = lg som same-bottomn segjuflc g-f line

LATEST-STATE-OF- CHANGE (unit ,changestate) A
Lunit:UNIT-CONTENTs - $ @ sequence -location @ same-bottom A
(u~nit:UN17- CONTENTS IM 2! chan gestate) $ @ sequence -location @ same-botoam

action INSERTjunit, insert -commandj
IM data =insert-comma nd: DATA
definition

Al 3 sequence-location 11 sequence-location = insert-com mand:SEUENCE- LOCATION
tn POSITIONED-INSERT[unirc:ta~sequence-locat on]

11t UN POSITIONED -IN SERT[Lunit, data);

action POSITIONED -IN SERT[unit, data I seauenr,, gf line, sequence -location)
precondition 3 topseq I saen 2!f line, bottomseq I seuc of line 11

unit: UNIT- CONTENTS = topseq @ sequence -location @ bottomseq
definition

create new-lines I Aeounce fl~2 line 11 new-lines =-data;
upae UNIT- CONTENTS pf unit Ig topseq @ new-lines @ bottomseo

action UNPOS ITIONED- INSERT[uni:, data I seuec ! line]
definition

crat new-lines I seunce gi line: 11 new-lines =_data;
update :UNIT-CONTENTS Of unit
12 (j! 3 topseq Iseauence of line, botiomseq Iseauence 2.! line, sequence -location I

LATEST- POSITION - 0F-CH ANGE(unitsequence-location) A
unit: UNIT. CONTENTS = topseq @ sequence-location @ bottomseq

thetn topseq @ new-lines @ bottomseq
else * it unit as yet unchanged, insert at front

newA-lines @ unit:UN IT. CONTENTS

end~

1l. 1.6.9~ DELETE

action DELETE[u.nit, delete-command
precondition 3 startseq I seguence 2f line, endseq I~~ gjuect line f

uflit:UNIT. CONTENTS =startsegi @ delete -comnmand: LINES @ endseq
definition

upat :UNIT. CONTENTS 2f unit jQ startseq @endtseq

11.1 .6.10'* SHIFT*

action SHlFTjshift-command]
def inition

over shitt-command:LINEs named line
d update :CHARS.Qlineto

som newchars SeuneQ character f
ISSHIFTED(newchars,chars,shitt-command:columns);

relation JSSHIFTED(NEWCH-ARS I~f seuncg character,
OLOCHARS I secuncpQf character, COLUMNS-TO-SHIFT I integer)

definition
3 old-fe ft-blenks I seaueng if" old-right-blanks I eun 2f""

new-left-blanks I §e~n 2f " ", new-right-blanks I aeouencs &f"
non-blanks I~.i 21uecep character I

-MEM BER(non-blanks , $, "") A
oldchars =old-left-blanks @ non-blanks @ old-right-blanks A
newchars =new-left-blanks @ non-blanks @ new-right-blanks A

* iient (new-left-blanks) - Ienalh(o/d-le ft-blanks) = columns-to-shift;

e.g. <("A" ,"B" , "C" ,', "> may be shifted by 2columns to give
< "I*~*WA" , "B" ,"C" > or

< "" "B" , "C" "">or

< ~#f "A" *"B" "C" > , etc.

II-.12 GIST SPECIFICATIONS

11.1.6.11 MODIFY °

acton MODIFY[modify-command]
jt lines I seguence of line = modify-command:LINES

let new-string I seguence of character = modify-command:NEW-STRING
definiion

if 3 starting-column I integer I starting-column = mcidify-command:STARTINGCOLUMN
then over lines named line do MODIFY-BY -COLUMN[/ine,starting-column,new-string];

if 3 old-string I seauence fcharacter I old-string = modify-command:OLD.STRING
then over lines named line d MODIFY .BY-REPLACEMENT[line,old-string,new-string]

end;

action MODIFY-BY-COLUMN(line, starting-column I integer, new-string I seauence Qf character]

definition
U.Date :CHARS of line
o (from 1 by + 1 while < starting-column namedi

obtain MEMBER(line:CHARS,i,')) @
new-string @
(from starting-column + lenoth(new-string) + 1 by + 1 wle = <ength (line:CHARS)

named i obtain MEMBER(line:CHARS.i,.)) ;

action MODIFY.BY-REPLACEMENT[line, old-string seuene f character,
new-string I secancef character]

definition
if line:CHARS = $ @ old-string @ $
then :CHARS of line

IQ some newchars I seauence If character fl
newchars @ $ =

REPLACE-A LL-INSTANCES(chars,old-string,new-string) @
sofie boank-seq I senuence of

REPLACE.ALL.INSTANCES(chars I $cuence pf character, old-string I seu nce f character,

new-string I ,seuence f character)
if 3 leftchars I seauence of character, rightchars I seguence of character II

chars = leftchars @ old-string @ rightchars
tbe REPLACE-ALL. INSTANCES (lefichars, old-string, new-string) @ new-string @

REPLACE- A LL- INSTANCES (rightchars,old.string,new-string)

els chars;

I.

'-

11-13

11.1.6.12'* COPY-LINES

action COP Y-LINES[unit,copy-lines-command]
IM lines I seauence 2f line = copy-lines-command:LINES
orecondition copy-lines-command:FROMUNIT:UNIT.CONTENTS - $ @ lines @ $
definition

bggoin
reauire 3 startseq I seouence 2f line, endseq I seauence of line I,

unit:UNIT-CONTENTS = startseq @ sequence-location @ endseq;
crat new-lines I seauenge f line 11 new-lines M lines;
uodate :UNIT-CONTENTS of unit jo startseq @ (new-lines) @ endseq

end;

11.1.6.13 ° REPLACE-LINE"

action REPLACE-LINE[unit, replace-line-command]
precondition MEMBER(unit:UNrT-CONTENTS,$,rep/ace-/ine-command:OLDLINE)

definition
update :UNIT-CONTENTS f unit

12 (unit:UNIT.CONTENTS named line

obtain (if line = oldline then newline =s line));

11.1.6.14 * COPY-FILE *°°

action COPY-FILE[copy-file-command]
let file = copy-file-command:TO.FILE-SPEC:FILE

let from-file I file = copy-file-command:FROM.FILE-SPEC:FILE
definition

over from-fiie:UNIT named from-unit
gQ atomic

create new-unit I unit II new-unit - from-unit;
insert file:UNIT new-unit

end atomic:

11.14 GIST SPECIFICATIONS

11.1.6.15 BACKUP and RESTORE "

actio BACKUP[backup-command];

" Simply activating BACKUP with its parameter suffices to serve as an event that we
may later refer to in a RESTORE command.

action RESTORE[restore-command]
!et obj issence of project U library U file U unit = restore-command:OBJECT

precondition **A backup must have been performed at the time specified in the restore
command and the object being restored must have been the object (or part
of the object) backed up at that time. "1

3 backup-command 11 restore-command:BACKUP.STATE = start BACKUP[backup-command] A
(backup-command:OBJECT contains obi) M of restore-commnd:BACKUP.STATE

definition
restore ob] i of restore-command:BACKUP.STATE;

" Note that because RESTORE commands refer only to times at which BACKUP

commands were executed, the implementor need only allow for restoration to such points
in time rather than to arbitrary points during the past execution.

11-15

11.1.7 * Restoration following temporary changes ***

demon TRIGGER-TEMPORARY.RESTORATION(event)
At end of job, trigger restoration of units temporarily changed during job

tripper - SOU RCE-DATA-MAINTENANCE[$]
response RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE[

latestsart SOU RCE-DATA-MAINTENANCE[$];

relation TEMPORARY-CHANGE-BEGAN(unit,state)
definition

3 tc-com I temporary-change-command II start CHANGE[unit,tc-com] = state

action RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE[s state]
*00 Action to do restoration of all temporarily changed units to the state they

were in prior to their first temporary change since state s "
definition
over state named s1 when s1 = ertie some state if state after s A

(3 unit II TEMPORARY-CHANGE-BEGAN(unit,state))
.! restore unit s of s 1;

always reouired PRESERVE-A BILITY-TO-RESTORE-TEMPORA RILY -CHANGED-U NITS

When executing SOURCE-DATA-MAINTENANCE, must always be able to restore
temporarily changed units so that the actual restoration occurring at the end of the job will
nct be anomalous.

SOU RCE-DATA-MAINTENANCE[$)
admissible RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE[

laes g SOURCE-DATA-MAINTENANCE[$]

tl -lm'- = -... , I I ! IIIob=

11-16 GIST SPECIFICATIONS

11.1.8 Maintenance of information about units "

According to the English specification many items of information about units are to
be kept within the unit accounting record. Using the specification language we are able to
derive such information rather than explicitly assirning it to the units as they are created.
To demonstrate how this is possible, we retain two such pieces of information associaled
with units, programmer and source-language, and show how these may be derived.

derivation DERIVE.UNIT.PROGRAMMER(unit)
whenever 3 programmer 11 programmer - (PROGRAMMER($) a pf create unit)
conclude unit:PROGRAMMER = programmer;

- PROGRAMMER($) is assumed to be a unary relation provided by the operating
environment returning the programmer submitting the current job.

derivation DERIVE- UNIT-SOU RCE-LANGUAGE(unit)
whenever 3 language 1I

(3 add-command 11 add-command:SOURCELANGUAGE = language)
as of lates start ADD[unit,$,add-command)

conclude Unit:SOURCELANGUAGE = language;

.1 -I

11-17

11.2 HOST-IMP SPECIFICATION

HOST IMP PROTOCOL specified in Gist

Contents:
General features of host-imp world

Nodes
Hardware failure

Specialization to hosts and imps
Interface with external world
Hosts
Imps

--------------------------- General features---------------------

Obiects of type item are transmitted between nodes. Relation CONNECTED indicates
which nodes are connected for transmission.

tye9e
item(MESSAGE,ADDRESS (node):

relation CONNECTED(NODE,NODE);

al.ays prohibit SELF-CONNECTEDNESS
3 node I CONNECTED(nooe, node);

-° NODES --------------------

... Nodes are agents which perform transmissions. Hosts and imps will be specializations of
these. Nodes have several groups of items or messages associated with them:
PENDING - items yet to be dealt with by the node
TO-BE-SENT - items to be sent elsewhere
MY-MESSAGES - messages from items addressed to the node

LL.

i1-18 GIST SPECIFICATIONS

agen node(PENDING :Anj I item
TO-BE-SENT :nL item , MY-MESSAGES :AUl I message) with

action
TRANSMIT[item, to I node)

precondition CONNECTED(se/f',to)
00, Within context of definition of agent.

eLeff used to refer to that agent. "
• Invoking TRANSMIT serves as an observable event,

so this action needs no body 000;,

pendina-demon RECEIVE(item, event)
**, Watch for transmissions to this node. "
triger started-event (event) A event = TRANSMIT(item, self*)
resoonse

becin
wait until (finished-event(event) V aborted-event(event));
if finished-event(event) * i.e. transmitter remained OK '
then insert item into !seff*:PENDING

end;

pendino-demon PROCESS-PENDING (item)

trigger item = *Self*:PENDING
response

bec Qin
delete *self*:PENDING = item;
if item:ADDRESS = *Sef*

then insert *se/f*:MY-MESSAGES = item:MESSAGE;
else insert *Se/f*:TO-BE-SENT 2 item

end;

action
ACTIVATE[] *'* This action is invoked when the agent is activated "

definition
begin

delete all *SeIf-:TO.BE.SENT =$;

delete all Osetf:PENDONG =
w Relay-Set- Time;

end-

agent

11.19

-------------- -- Hardware Failure ------------------- see

aaent hardware failure with

"' Node hardware failure is modelled by the following demons, which at random deactivate
and reactivate nodes.
0*0

demon NODE-HARDWARE-FAILURE
trigger random

jjsgjj deactivate(some node);

demon NODE-HA RDWARE-RECOVERY (node)
tripper rando A lactive(node)
rsponse activate(node)

end agent;

Specialization to host-imp world

Hosts and imps are specializations of nodes. Messages specialize to user-messages.
acknowledgments (of user messages, when they reach the imp connected to the destination
host), and host.going-down-messages (which a host sends to its imp to indicate it is being turned
off).

agent node superaaentof < host , imp > end agent

tvoe message suDertyoeof < user-message ;
acknowledgments(ACKNOWLEDGES I item)
host-dead-acknowledgments(ACKNOWLEDGES (item)host -going -down-message >;

always rirohibit DIRECT-HOST-CONNECTIONS
3 host. l. host.2 1 CONNECTED(host. 1 host. 2)

------------ INTERFACE ---------------- 0*0

We model the user interface and possible interactions on our host-imp world by defining
two demons, USER-SEND to create and send a user-message to some host, and USER-TURN-
OFF-HOST to turn off a host.

C..

,1

11-20 GIST SPECIFICATIONS

Aget interface with

demon USER-SEND
trigger random
resoonse

create user-message, item I
item :MESSAGE = user-message,
item:ADDRESS = some host;

insert (some host):TO-BE-SENT = item
end;

demon USER-TURN-OFF-HOST
trioger random
resoonse

begin
require 3 host;
create host-going-down-message, item H

item : MESSAGE = host-going-down-message,
item : ADDRESS = host : CONNECTED-IMP;

insert host:TO-BESENT = item
end

end agent

...HOSTS -- -

Hosts, being subagents of nodes, inherit nodes definitions; in addition they have the
following:

agent host(CONNECTED-IMP I imp) with

always require V host, imp II
host: CONNECTED- IMP = imp L, : CONNECTED (host, imp)

-=> CONNECTED(imp, host)

pendino-demon SEND(item)
tri gger item = *self*:TO-BE-SENT
response TRANSMIT[item , self' :CONNECTED-IMP]

end agent

11

11-21

--- -- -- --- -- -- -- - IMPS --- - - - - - - - - - - 0

* Imps, being subagents of nodes, inherit nodes definitions; in addition they have the
following:

Agent iMP(DEAD-HosTS :jLny I host) with

Attribute :DEAO-HOSTS used to record which of the connected hosts are considered to be
"dead" by the imp.

One event which causes an imp to mark a connected host as dceaa" is receipt of a host-
going -down- message. *

demon MARK -HOST- DEAD (host, host-going-down-message)
triaaer host: CONNECTED- IMP = *.Wt A

host-go ing -down- message:: MESSAGE = se11f:PENDING A
creator-of host -going -down-message = host) V

-lactive(host))
response insert Os/f:DEAD-4OSTS host;

***Successful receipt of a message from a connected host (other than a host- going -down-
message) will cause the host to be removed from those marked as dead.

ipendina-demon UNMARK-I(OST-DEAD(hoSt, item)
trigger l(item:MESSAGE isa host -going -down -message) A item = Se/f*:PENDING A

host =aaent-of(latest TRANSMIT(item , self*)
response delete *S-I- .DEAD -HOSTS host-,

oendina-denon SEND(item)
trige item = *se/t*:T0-BE-SENT
response

becin
delete *Self*:TO-BE-SENT a item-,
if CONNECTED(-self- , item:ADDRESS)
hen if item:ADDRESS j"j host

then if' item:ADDRESS 1= :DEAO4HOS7S
then begin

TRANSMIT[item, item : ADDRESS]I;
if item:MESSAGE W~ user-message
then ACKNOWLEDGE-OK [itemn]

glit if item:MESSAGE jii user-message
then AC KNOWLEDGE.DEADitem]

iLit TRANSMIT [item, item, ADDRESS)

t~iTRANSMIT(item,SJ
SSend item onwards through network.

11-22 GIST SPECIFICATIONS

ggending-demon RECEIVE (item, event)

40*Specialize definition of receive for imps to terminate wait for a message if more than 15
seconds have passed since start of receipt. **

trigger started-event (event) A event =TRANSMIT(item,node)

r e ' jq

wait until (finisIhed-event(event) V abo rted- event (event) V
duration(event) > 15 s~od);

if f inished-event(event) then insert SeII*:PENDING =item

end;

pending-demon PROCESS -MY -MESSAGES (message)
trigger message = Ose/t*:MY-MESSAGES
response delete 4*!:7MY -MESSAGES =message;

**Imps simply discard messages addressed to themselves.

action ACKNOWLEDGE-OK [item]
definition

*b eci n
Create acknowledgments, reply Iitem

Iacknowledgments: ACKNOWLEDGES = item,
replyMESSAGF = acknowledgments,
reply:ADDRESS = creator-of(item);

insert reply into *self *TO.BE-SENT
end;,

action
ACKNOWLEDGE-DEAD [item]3
definition

begin
create host-dead-acknowledgments, reply

Ihost-dead-acknowledgments: ACKNOWLE-DGES ilem,
reply: MESSAGE host- dead- ac kno wledgments ,
repty:ADDRESS creator-of(item);

insert se/f*:TO-BESENT = reply
end;

demon CONNECTED -HOST-GONE-DOWN (host)
** What to do when a connected host goes down.

tricoer host:CONNECTED IMP *eLf* A lactive(host)
res.on DEADIFV[hostJ

end demon

11-23

action
DEADIFY [host]
definition

beg in
delete all se/*:TO.BE.SENT =(somq item 11 item:ADDRESS host);
unschedule all [SEND(item) II item:ADDRESS = host]

end;

demon TARDY-SEND-QUEUES(item,host)
*** What to do if send queue not emptied rapidly enough. "

trigger item:ADDRESS = host A hoSt:CONNECTED-IMP = Oself* A
duration(item = *se/f*:TO.BESENT) > 30 seconds

response DEADIFY[host];
end agent

11.3 FORMATTER SPECIFICATION

1
4

41 4

- LC-
4-4-4

.0V L w4

41 coL 10t

o 4-toc

Uj 0w C U =

-d m f.00L.

41 t; 0

CL *v C" V -C C- *. cm
= cc 0 *y'J 4D cc1
*j CL U0 UfO- 0

4 =1 c1 cU -0000 ==
Wa .1 - C-l C4 cc 00 4

to U 406 0 4-- W - a)0 041 c

0 V0 01JV z j 4 4
C 3t. Q 0. 00

0 * 0 c1 CL-4(v (g
0.0 X 4- 4J0 Q J 0 0 a

41 0 1 to to0)g0 -0 Q4 j
.. a .1.9. 4. 4- CO 0- c .

co 0 E C..- - C- 0 6C - 4-
41 . - o - jt 0- 1 0 0 > "-0 70Tcc*441

0 ca)Em o4 0 0 V V C0-UC- ')f

.- .. m W0 c - ww0c 0 1C m0 4- c C
C-I- 0 - cf- 0V = 10 co 4 0 ccC C-w 3

0 0w O 4- CC~ +0C-.1 0 300 .00
Z-a c m -. C- cm 0 V) 4D.1 m m

(- -0. 00 .- 0 00 cmcC0 CU Q
cc0 -) 3t- 00 cc 4J to +jto--.1 1- w occ0

0 c- 4- 0 00 U -0Ec 0 c 00L C
0 * 0 c 0U.0 (D M 0 .0 0 EO -r- 14
U) im U ... 4 00 00 060 4j t-moS-SO j410 C

f-C~ 4)4. -In C .000 L 0 0 cc 0 4- cm cm a
"- 0 LC-t 11 C- 4)oC 00 W -G)00 -0-

31= C)Cd 0 U4 3 41 "D c- -$Ca MV C 04- 10 .004
-) I0 C4 2.0 C- Z W~U 0 * U 9 0ft-0= = 3t0c-

L .- 4J , CL co ~ c0 o0C-a)u4, 10.0 4 0-.
0L 0 f-cccc%3C CL04 C 0 .00
U- 4-1 C" C-' 0- 0) ~ 40 mC-1.. C" = n 00 -

m =4 0 CL CO 4 0 ft 00) Lc 0 0 4J 0 .0 0

C I. to~ 0' -C- cm a) .0-D.0 (D- 0--00IV1 4
(- OCo 0 = =C- = A0 41-- -0=4 C-

0" -C1 -41 *j -0 j 'o-04 4114 44 C~

0. 00 C0 c U0 z 000 . C-0 00 04 44 .

0.~ CL. 4L 0 0x 06-40C 0 CL OV C0L .. 0 0
C-) ft 00 0 40 C *'.0 U2N-G 0000

~41 V I 00 C O -U ~0.4 0 '

11-25

4.

3 °.

3'4, 0

4.3 3

C C"0 0

- CD

4. E

4 0 m. . n
.0

cc 0
Ct. a.0 C.

00 cc -*j

J,. - -0)c

c0 C-C

4cc.- , 3" 2. 0%
S1 - o"

4 C CL to0-

t- .- 4 .=

1.!)

cc3 C -Dw3

41 0 11 3 c) cm 9 E

C4- -0w(0
-0 0) 0), - M Mcc cc

06 -l C~ 00- -M 4 E c cm

4j C J-C 1 c w0
0)CmQ - 0 39 %(813864c

w c 4 -0 L.' CL CD 33

C to2 m. E. M.. 00) - j C- tcc 4J#
C- C7 4, VLL r . 0C. t

43 G070d 0 a) CD.. cm

31 C - 0CM QC- Co 0 > c L.'

0 I - z =- w -0 >$ 41t m
- - + 90 +j U). 4430 + .>

o 00 ..-C .0)0 3 1.3 C O ~ cc
It-~ ~ .C 1 4 : 2'n 0.- E 41 4-t-a)

c .43.J 7.0 4. W~~ CI 0r o0D0CLC
- C-0CL 7 4 C 03 -.- * 31 m9. 070 >

4-4'.0 C0 0 u 4 4 4. 410+

.- .-'-I~0 . 4~ II c 0 8 0 0218
> *0 0'-. ---7 in 4-. +- = . 8 ~ V.

W. cO~ - . 0 - .c cc 4 (D to C t- 06
4.)~~ sC~~ Sn CM -..- 3r In +.) =n.43 ~ ~ 4 . 1

C................. '0o. t. C 0) C 1 00&
ID0 0 000 O.' 4

Vd .0 00 00 24
.0~~~~ r---C O=n 1

02- 07 Q ... '0'-

0 w.0 0.0 430 c
m0 toC C- 0- 40)4

1.-a 0708 0~J
40 CC OC C C4M-r CL"

06' .0-L CL .. 04.
4.44 0.0 +J w *31+

11-26

4- 4 L0 ci C

- -C - C
cc 0c0 u.0

cc 41 w0
0 4' m 04

C 0-ul 4

cm. C0 . w a)
E 0l 0U U c dw0 2 CDw-

C..0a x C4- m.

w~~~ w2 C t Dc
c- 0.V

u.C ' - U,0 c m

- , 0.- ~ . 'o 4,3
' 0 N9 c-. CL f

- C" 1 0 c 0 c- +AC
ECO L U, CD 0O 40 u D-

0).0CO c (a C -- r

04- 0 0 -j =O 6- 0' -
(2C 30 2 CL

0''- 0 2 4' c0 41. .

(m
4

o 'o cnC cd ~0. '-4 w

c C4 - (- 0~ CC
2 cm,00 cc 41 X I& 0) 0 ' C/

to UC0 * CC c 0 I-zccC
.O 0. 2 0*'i u0 z *.-

0D 10 40'0, ** c-. < , Ci 0)
- CD'-' C fl 4C C 0 C 0

C I C C 0 I- cc 1 I-4 '
U L >oo o o C E44 CL, CLF'a 0

C- 2o . 0 -.. D L 0 ..J '0 4
S - . d C U -0)4J 4, 0 C - x 0. 0

4,' C 0) - 4 (n 'o - -4- 2i
0 m o' 0 n 4.) m , 0 - ~ ... a-.. L

.644 Co,-& I .x 0)'-) 4, 0 0 --
C 0 CCC C C. -- 0.&d)C4- CD 4-C4- I.-

U) -3 C 4'D 4, J 0C 4j 4-i c 4 1

2 IC CZ c 0. +'0 CD

c 0 00 C a 4

4- C-' CD- 0) co to C(D' iii 1L
4'CC-C~> C 0 fIC C'

+j *-

r 11-27

C C

10 Cj

0(

-v ,

-4. 4. G
2 -- a.o -j.

4- ~ 4 -~ 4 ~ C

0 a4J

aA 4-0 4-C

P- ' r r- -

4J
4

41 41 i 3C

(n 0 4- -1 - 4J --

04- 4~ L. 4. L. 4
u.J 6W0 C , A-

u ~ CL CL C -4
41U

Z CA,001 0-o1*0 L.Jcc

cc 4) C0C . C -9

11-28

4-4

0

car c 0
- 0cc

C 0 .0m o

C 0 w a0

4- 0 CO 01
0 00 0 -W00

CU) C4J J
(C .61 1

0 V). c-

001 4J , *

0 C- t CL =. 0 cc-L 0

In f-C - C 0 00. C
co (.4.1 2C 0v=
- - -E0j 1 " w 0.cc

mU C 00cV) 4

cr. L -D c - 06
0 UC au

1tI 0 0 0r c 0 ~ 4.)0-
4.1 C 4c 0.* 41 1 a 0

O0- o UC 0~ 04z41
0 .JCL 0 - W.n 0 -0

C 0O x 4.= 41 -0. x 4) .1

V4) 0. <" 0 C0 4 .0
cu- c4-' IV~ CL c-0 E

w - 0 - 6-L 40 00D . c
4-- 0.J0 = - L"0 a C 010 C, 0

0 0 01 0 CD0.
0 C 0- 410 0.o --- 3o

U 4Z 0 0 0 4. CL

0 i.0I. 0 1(
0. 06O. .0 CU 0

0C7 a- 01 CA 01 u C 0c
cc1 0(l w 0 c 01 010 4(

CL~ 0.. a~ 4.1 0
- c 0 0 fX(" n

0 j .- U1(4- Q~ (

c CLLC".. L20 I
C 0(-.04 0 ~

*1~ 4- L...- &...CCLI. .0- 4 D
j - 0 4. 0 - .00 -

cis .ga 100 L 01L0 ' 0 U C) '0.

I ~ COC a
4CC c 0 05 0

Z~~~0 (DL U - L -~.~

C0 3C f

11-29

I,

,,

oCL

0

. .0

0

tj 0

CU cc to,w - 0
0

., 4 cc

1 , W 0 4- M

O .) .(1= ",-,-

M

W ,- .I "

00) 0 4)

CD 0V4- .

CL~* 0a

0- -
<- (D

C'- to 0 *4'm

owi w,

QI c0 -0 0.
00 0 cc j

4j 0'.- -

: I II III0I III

11-30

.44

CL

C3

CaD

060

CL C--

m ~ ~ -L CL0C . m

*r 4- 0 mc

4) 4 0 CC

In L. - CL CJ

- 1 a Ca o0
4 .' - 0 t 0 .- a-v 0

0 W. ~ 0. 0U

c a L. 4- 2)
0)4 4- 4 0 Ca 0) -

=). .-) 0 - <) - 4.

lcm C cm 4) C1 0 0 0
to cc (D to .- .- *-

00. E 0 u 0 Q a) 41~ C

0 a)- 0 C a a 0 -

f- -Z -4. = -j C- 4-

00. C a) J a .. ' 4 C7 m0
0. 0. 0) 0 r Cr a) 0)

4-'. a-'. 0) (3) CC Ca

*~)U U C- V-- C. ".D.-

-0 c~ CM- M 4) cc 00
01 cc to' -C 0) 0

ca 00 0- CU'. C

0 cc = .C w C 0 V 0.C
ccccC C j E - u 3 " c Z *

0 - CA to V) - - C C

VC3 C V) C 0. C -cc- D
4O4 C, 0M'.- 0'm .- w ~ 0L C: C

<~ 00 *-0 cc0 x. cc xC x j C u

CL w)0 4- L a-D 0D a. 0 C

0 (D OCL CUO CaW ".4 "-0 a)uU
6,j 0 a-w0 EU EUJ L. t- 4 .- UC
o) ' C1 -C CD U Z U 0

-)C- -'- 0 (D 0) (D- 0 0

CC 0 C C0 Cr -' r 0) 0r U

L4U .4 C) = W a) a
07 0. UU I- U CV

.OC ()- C) .40

CC) C -D)

-0. cca -- - 0 .4 ~ u

11-31

0

c

.

.0 n w. m

0 ~ w w01

II0 M MCD a +aC

o a CM -'

.0-1 0 .(e 0 ' 0.)- - -
4-- aJ W- 4J a- a - Q

(0c 4-' 0

0 . - -' 0. 0

Q) 4.. 0 4- CLV

; 0 0 4, D "
"

.-

02 4. i' 0 .. 01 ' 0. C.--30 , (

0 ~ 01 01 001- . E 0- ,..

1 0 , . CD m .0 01)
M - - & . u c- I- -

01 < ,) C" > - .0C -' p :3 C" > C"
a 0- (- - to - tom " 0 - -I cc (D to

01 *4- = . 01) -rC) a

• - 0 "- .1 ..- 0")

0) V) m) 7 . cc

o i1 Im cm w- -

(D cc .v)M C CL 4 a (-1 41
W CL .0 0(0.) 00 0 0 ()4) 4

- a - to .. C o. -- 00 c.c10 a)C0(101-)U
a 4 0' i C" 4 -0.C.... = ca)44-J W >0 a
C) = ' 0 a m c-E + C . .. Q00 L0. C (1)0L

T - L - c" < CLU)..4J CU0U 044.0 4 - .0 C

a) ...V 4-. CL,.t. 0 ICC C100. 4- o a02
'-0 0 M - -U,00U 1 -CL0

In 02 Nt Of LO 4- 4
M1 -- "4~- 010 a) 4. 0 CC (D-'

a) 0 .. 0()0) 0 0 cm>

06 0 a:.1~0 10 > uj-' CDl0 0 ,I -

cc00 4j a-d.+ =0Ca 0 CcC. 01 -0 -
(In(4 % 0 CL 0.-C =) >-C 4-jcc:w

to(4 O.- Ifl"4 01 -0 4j 0J u 0c
00 -U0 L. c 0 .. 4j V)4 -r q 041L. (

CD .0 C"(1)4)2 0 1-0 01 0 CA.) Cc0-a 101
0m cm c 4 v i .0 r- 00L0 01 0. 0

-t(co20 01.1 L4 4J m~ It - I0M 4. 0

CLL 0. (d0 .LJ.JL 41 4-.& C.) cc
-~ 0. 0p CL0 014I*

40- 4-. C7)'.+ C0(. ch 42 LLJ
a)L wC 0.')0>4-'c000 0-

a)C rml (M .0~ 0 4.J cncmx (M3
m0-0.c m) + I 1 cm -0 (o= -t

X 064 0. CL 4- M 02 CC~I 401.0M CCL4
a)10 .021 L -' 2 O 0*-0 '0Q0C-) 4

0a22 4 Q)0f C.. 0.01D 01 .J

cc0 L) E0.- L - c . -
j Q).4 06 a -40 0 wQ LC

4.0) 0 a).0 0 u IX.0) 4 0

=.((0 a1.2(~ (~ .(

01 4.... . -- CD 4. 0S

to 01) cc(4 m220 .

.0 01CD00

o

CL c

CL

C7 w

C*-C

0-

0U
CDl

0 In

(a C

C '0 r

*-C 0 1cV

00 0 m c

1 UP 0 C

Lp - 0 c
CL0

0

CL C

0 0 0

4.0

11-33

c

cx
0

C

c*

r-

4J

,'" 0

0.U

m 1

0 '. .t

O"c

cc C

GM

- 0

co 0

V

C.i

"- 4.)- 0

11-34

cc

= =

+j C"
0 cc0

0. 40
v 4 0 11

a: u -aC

0..-

0 0- C
Z 4 -- CC 40 4

41-CL .
41 C1 C-

C 0: 0
XL3 4J 4j u

0z ~ 4j CO.4
- % V) 01-mc

.0, C aw
, L- 4- . Cc a

00' x - C

4, C) 04-) cm

-V - 4,~o - 0 0L
CC. C.1x 4J *00

* ja 4, 00---

= +C.I OO O 0

wi ~ - 040
C A f.- C 4- 4J L

(0 0

- , C 4 06 .

.0 ccLJJ-.

11-35

4.1
0

* CD

o 47

aCL
CC

0 0a

u% 03

* 0

0 .0<

CLC
r= 04 c -

13 0.

C-(Cr (
CD (D- 0

(UU V)

C\C 0.

*E - .(U
IV 13.)0
V * ~ ~ 4

11-36

4,

0
a)4,

0 10

10 to 3 4,c-a
o- 030

4- u C
0 C 0 c a 0 4

"o cV J, 03,
- E3 a j 4 CDI >,

C. - 0 CD 0V C -4 .41c
c J, 4- InC 403 A cC

a)CL0 c c0 0 C -

4-& 0 cm, u C C- 4.

0)06 (n t 4L 40 0 LLJC
m m. cc*).U- 4 03 OC - a). 3

L (. C U 06 CO . C cc .0

0 In ~ r= C z4 04,0(l

10 C. 204 C- cc 0 CD
0U 4-C M . 41 L L 0 *' 4 2 CC..
'. 03 0 00 C' 3 +j4 V.1 0 -
to 4 1 A~ 3.- *4, mJ m. 0c~

CL 0 a-' .&0 CL VU 0V CD'.- 4

(U 03) 10 0-' V 0 0 4-

c0. 0L -= 00 -.4 .. J C. (D - 0

41 t0(0) 0 C 3 (V 0 3 3 -4 < 4
0, a .7 t- VLw'-(0OC0

o) (A-(4-aC. LO~ 4)- U Nc w..

0. o~ r. (M 0 - (A04 a S
c o -II cc .- U. 0 .0-D

cm Z O 0 4 0 -3 3 V 0 44-.(0jW .

CIS. 034 -(d n .- 03) 0. to(U L. mC
01 *j 10i *.I 0 c- 3 & 0 C V)4~2C- .- CC- 4, 4,c L cL

CL 0to *u 0 +j C0 U- a) -
cc. -C o 4, to. 41k 4). CD cc 0

C- 4. . 0 0 V 4,0 * 0 4, W0a (4.2 (u
I.- (A. *j uU cc V)f 0. . Atc

1 f-3t 4 4.- t- 4 LL 4- 4, I j
o -- 0 4,1 0 4- LLJ 0c u3 4.

Al 31 4 - 03 :34 31 (A 1- :1% " 4.- = (
cU (D4- 0 010 toL. In - U- CA Q03
al C V4- C) 4V 3F 06. 4 .e. W. z

(U* 4. (a(r= 4,L 4,I. S- 0 1 - 4- -
*. 0- CO 4- 4 , .- .. , (AU'A 4,

cc u0 3cc. =. L3 In 4J .- V +j 0
0.C. to .04 cU/ c U- 03 (06 Uj 4

J90 0)' 2D (A) 4.''. 0C z 4.-oA C 10J .C -U 44, .(1C"0 (n

M~ ~ 3 0 u.0 4,(4 3 03 4,) in
0 ' to C. c,. 0~ .J24 t- . 0 -vcC

41 o U-4-2(Q~ l'- a)- 4 - 3c
4. 4.- a = C0 - .a)U CC L W 4.o 0 4. 03j cc -O 00 E 0U.J. 4-1 41'C

1.g 0 3-10. 04 4.U
c - 2 L. 4.. C. C (
oI. 4) UV0 0) 03 LWU 3

LU 4. U0C 003S 411 Lr u4 CI
- wO V C 40 0)

2L- u3 C) 031f U 4,U

a 0 30

= 00 o

3 - C0 L.

11-37

C C 0

31 QC C0

o CL

40 InO 00
0 4, -- ~- Im. 3 .

4- 0. (4-4X

0 4-C 4J C-

o 100~) %n. 0)
c ~ ~ C- - 0

C7-a 0 0u C"u c0)

Ci d) 0 I 0~

-) 4- -04
L4- .) - 4.

03 K 11 11 0I

oi u .c- u*'' 4-1 WC co U

o ~ '4~ -0 - 0 4n

31 C La) 4 4 I
6- 00. 02 - =0 in

a) -O Cn 4 L: Ix

:a - 0 4j -C .-.I .S .VI-

co C 0 . 4 U- 4 u -

II cc d'4 0 ow a0 u .
m 4- 4-1 m U- 4- ,

-, ~ ~ ~ ~ 4 0a.~ L~0 4JI

4 ~ t 0 1Q C.-4J

'o CL C
-~) 01 0-c 4w cU

V71 41

nQ 010(Pu 0 4
4U 0 u 41

41

di C

* 11-38

-

I tv 0

00 3)

u

C .41

a~ 0

41 4 4-

0- c d0 - 0
0 a 41 =

33 - 4-' C C

m" - r- IV
0~ 0 LW

4, C L -' 4' 4'
4J 0 0 0

66. Co C- C,

- 'k C 00 C f

= a) 413 - 0 C3-

3- I= a-. 4-' C W

3t c 4 4 mC 0 -

4O 3 - 0- t- 4'

o o/ 4 41 '8 0 -4

3i cn 0. .I L

4' ~ ~ 4 Z)A . ' 4

o -.. cc C>, 0

4' '- .- = f- '-

0,4.) - - 0 4z 0

c. 3c 4-'. Cr W4

.- CZ) 4D C '

- 7 dc .. L- C a)'

J 4- , 0 -

u CD -m

11-39

EI

0 a) .0 o

0 04,
3

39 Is , q . 0 1- Cc

cn C- C

S0 c(NJ 0

d)- ,., 3 li
0 co - (D

C: 3 -- 3 - ' .. '

If E. +j +, .. 0 ,)u € 'o) 0 'a W +j 0 a

- 0 j 4,4 -

.0 I-f- 0

- " ' - -0 4 C 1

0. -. " ' 0 0,. 3, - Li C.

C +j .. .

0t Cc 0 , *4.& C0

C3 - 0 - C- "o", 0

,f, 0i 1.- 0 6 - 0)

:0 Cc 3 (D -

I C CL 0) D(
CD 0 0 U).. z a

U,) . C 3,
-

C-, *,, C
U/) . -- 4,0 0 - - 0

• ,0 3 4-c- - 3

"1 *. 0)-' 044

S 0- 0 (A- C- 4-
• ' U) ' 0 3. J O,

4) ,4 c . .

ic w C V .*0 0,4 -a

C 0- 2" -- 0

.0 CA: O '-4

z, 47 4-0 1390 0
0~c 04 04 0

-~~~ 0 UP -

... .,-0 dCC UI) I - - --,

CD C.L C

X2 >) :~J)
0 2-J 0~441

CD) 0 C0 ~ ->
4,442~ -

11-40

C C

cC
001

*o 0 cc

u 0 0 3c

C7 .C c-4 t- 314

4. 003r 0 u~j w

Cj 4. I c

0 m 0 . 0
09 ACv c. 3C-

a) a0 * 0)

4.~ 00lU 0
4. 41)..J 4

00 IC 1

I ~- -- 0 C 0 .
.00 m) 0

3l4. rIl. C- 0

3 ~ (33C 9)

C U)C 0

) C -D 3L c C

U) c /
4J0~

11-41

0)~

CP

M 4 .J
4J C.

** 4be 4-
zC

4c* 4) O

0 60 -
4- 0 ~ (a 3

3C C dC 4

0 066

41 -'1 41

39 0- =

0f- C

C o C7C U-

4- -j = 0C

4c r9 D- C 3

.C LW.

43.0

00I

C0 c

11-42

0
C.-
C

a)

V) 4-

4-4

a a)

aC CC - C

E 1- - >-

. cm -j CD-

a)a a). w
> 4 1

0* CD 0.0

S 4. 4 8) -L LM 4

0' .0 u W V- ~
>8 Co 0 i . . (.4) .-

Lu > 4. =- . (0

= 4- 4- 0 4-1

0 *- L 4.

> -CD 4 -' CL 0

z 0 8)i/

w-J4 c~ C0 = 0 4

-I .--'-' 0- 4. M 4.

a)a -J 0
>0 Z ..413

(~ -u J 00 I~4)e)O '.C

11-43

CC4

w 0

4-

0 0 '9.

W N 0 4. C C--

CL 3(U*

0. U 0 to

4- to w r- 'v0.0C+.

0 4,

4-+0-3o + o .0 0 0
0 ..M LV C'4- - 4-C

0-C 1 0 4 .C
.J 0- * CM0 0-

4j* a . 03 0) f*-
.0 . .- C 0(U O- 1- '-

o04 a(4- - CL C

;m L.U 4*0 C 0 4- 'C Lc

> C *4- 0CL4
0.-4~ -4 0 V0 00 4. .

00 4- 0 0 -+j'. 0

> *.- to .- 4-0* 4
0 .C 4-) *C * '.01 - LLa
4, -'O - 4. 0 0 C . - ,

4 D 0 C 4-C CD C .- L- 0
(A- CC ** 4- C.1 C ='. +.j i..

.- a~0 O 0 cc V. m
- 0 C E a - ' -. 0 0 0

Z . 0 I 0 4j--L C) - C C
61J 0 (A' -) 0 - 0 c

4-~~ 4j C j 0 0(U . .
C.- C. " C 4. 0 0 4

0) 4- C~* 4)-. 4J 9- /
o~ ~~~ 0..- c4.- C .4) C C

cc 0C (Ca C4 00 . a
IV 4'' *~ J W ..

o) C C.. '- 4 .ij0 - ,
4. E C. 9 0 . C)l~' 0 i. u-

CJ ~ ~ ~ 4 E. VL. 0'-. . 0 V *

04 ' -j 0D C U ~--3- cc .

0 0 C 0 2 CE.E 0 a u
C 1 0 a)- C 6 0 C- 4 1 a. ~ 4

4.(u O O0 -

CM (O C 0(C ' C Z 9

4- L U ... 4 -. O(4 ~ *

11-44

C

C-

E fI

0

CD
0*

0 C

.0

a0

co
C.-

0

4-0

C u W .

11-45

co a)

Ca w

r- 4-*J ",)
a a =a +j:

,O- a E u4,(

w 0 a) .0 4, a - .7"a
Ca a D -) cc a

In4-+j) . . .- - cc

LC-~ - rn(
a0a =a~a w * a)1).)S

-- Wa) (n

4, - L *-) 4 4. 4)4

ol.OEICL c .,) .. 0 ca0

00n . .- Q - 04 > cc Q c4

CDa 4 C CD~4 .0 a) Ca)
UU (= cm 4-4 a)

cC ' a 0)0a 2c -A 4j -0()c

aa a 4.LU) L 4, 4-.Cf

tD)- a) m, m D 4- a c- L. a
;M ~ f 4-C CLCa -V a) C4 C --CLJc o0

U) C L) .- .1a - : :D- -a cU

- a) 4 '- 0 ac)I .C .
J- 0 .-j ~ uj a)1 QCU

V) ac c 0.0 a) - V) V

CL4 j w 4 - .4,1 C4~a 4a (LCD
Ca) 0 = C4, U eU

a a)4, . 41 a)3 . C a) C C

aa 0 0 . E -o CC
C ~ C QC E . to0

0" E',- 0~'~ L. 'o *j VC

eC Z4~- .- CL. CZC C-

j~ CZo CL).. C7 0 'D
L'- .uj4 x-o C~CD 4 ~ 4

O.4- c)-u44 CL -m 4, CDCa)

.- ~ 0C CCLUU a

CU L. a),) ~ C 0 a

11-46

ca m
4)0 C7

(D4-

z x

C>
-4-

0 ~~ '0C

f) C .

C .
0U.5 CD

- to0

CD~

11-47

C E

0 I,

0

CC

FE cmC-

ZS 4-

00 -30

=0 u 0

4 4-J > 4

00 , 4' 4O 0

w0~ 0 -'U0 4 to

4J 4-'** - ., w W m%- 4--

-- 0)a " 0 1c
-- 0

) C 0CZ4
0 Q 'a 0L4J

OJOU C ~ -O) 0,4

4J

0, 43 04
* C ~ ()4 'M'*-0

11-48

'4-

U. CD C D

- .CO V)!9

U UV)4-- CDwm4
cc m 0 ccc 4 .u* 94

C 0- - C 1 .0 4- IV)
0) ~ ~ ~ (*-0 .4,4 C

0 cm 0 CU 4-U c4,, o g 4)30 4,
al.' 40 fC 0 0 or0' 0.
CL CO O CM 0 D 0J,4-1

c 4- *. 0 0 0. 0
cc w0~ c +0 .- U= cc6 0 -

x x nCLIC .0 ' a 0. +.p-
'4-(0 C '-. 0)4 *0 "- '

4&, (D.~ >% V-C 0* 0. lo- to0 3g- VA~2 4
C 0 wCC 0* c 5 CLO CDC cm

00) E~ C-'.- 4r-0 a') 0x 000c
w-a 0 0m -a) CJ *-D O cc- C4

a c 0.1 c. c~ c0.- C 10) C
--- z0 C- - o '0 M a t .m

tL'uj c a) cc '0CC c 0.0 30 0)- 0)
'.-D- c) -" ;:0 c..- C 41 c C6- 0. C
00 us 0) &M ,. w -C , 0 N 0) to-u

wC w) >) *.- 0 CD E4ww 4-C CD
- vj= 04.- M C J 0 t c- 31 cU 0=

w U coC o~a~. C)1' a 0) t E'0 cc0(

00 '- 0 C' M*0 z WC '- C9 4,- 0w , 4)I

X . -C to .. 0. 0 3co- OLO c 'C.. - 0
y)) C. 0 . C 0.- .-

0
-I IuJ

w w.a. 0*. WC OC' CD + 0 00 0 J E c
--00 *C0j + 4, 0 m co- cfl 0. CDw

X *CX - 04- 0'CC (n4--. - - c C 0'0 4-4

Z w ~c cc . 0 u in0 L c A C~ 4- , '.-o
COwO14) W x-'c 00.0 aah -u _,, C C

C - C w. w * 0 L 3 C -4 . -4 a) C
14 " -0...J V'00 a 0 c(, W C 4) (-J. 0- .. J C

<0 +L1. 03>0j 0 CO c)- 4, U. CLcw 32c =-
- J .' - ' . 0 cc4, CC0 . 0 4J- C Z_. uia

0.0 04 C 4-0 0'- c -a 0 C c = 0) .- J

0 a)0 a) 41 - 0 0 ' g- 604

a-' E cc 4(n 0C 4,)

L. 0 U . 4. 0) c o~ 4j -C C 4J5
CD 4 u (v U .- UC/) =1 cc 402M-

E-- C7 '0 0' '0 2- ' V0 '0z wC C_ 0 0. 0 Ca. 1 c C- 0).C D CL4

U C- (A. - U 00 0. 4 w) uL wC.
C0) a'0CC 0m0 C

11-49

co

0,

*0 4- a

w. c C.. 0
o40 0c

E CD 4,

0 ~
Q) 4,- 4..'

cc 0m u4.

CLC C-

cm 0 C) M

C C7 -

'o ~ 0 c c

cc0. 4, cm

z M CL
CO " C ,~ 0

cc - u0. +

C0 CL0 04,
SC Co LU

4, CL. mi c

C 0 C 0-4 a

0 UO 4, .

4,4, C ,CP-. -

- cC0 i.

~Cg- C u4, .
c CL.CC

cc C .CL 0

C.)~ 4,,LA
LJJ0 CD M

41. +j I, -- -

C CL 5 0
C 3 uc 0

u 0 0
cc v . 4
O cmC

R-1

REFERENCES

1. Balzer, R., Transformational Implementation: An Example, USC/Information Sciences Institute,
RR-79-79, 1979.

2. Kernighan, B. W., and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

3. Teitelman, W., lnterlisp Reference Manual, Xerox Palo Alto Research Center, October 1978.

4. Tinanoff, N., and F. M. Luppino, Programming Support Library (PSL) Program Specifications,,
Technical Report RADC-TR.74-300-vo;-6, November 1974. (Structured Programming Series,
Volume VI, AD.AO07 796.)

5. Wile, D. S., POPART: Producer of parsers and related tools, 1981. (in preparation).

i . °.. ii

MISSION
* Of

Rome Air Development Center
RAVC ptanh6 and execute45 te,6eoA.ch, devdtopment, te~t and
46etec-ted acquiwtion ptog,%am in 6uppo'At o6 Command, Con-tAot

*Communicewtion6s and Intettiqence. (C31) activitie.. TechnicLt
and enginee~inq 6uppott withi.n a'teu. o6 tec~hn.cat czompe.tence
Z6 p.'ovi.ded to ESP t) u P 09'La i O cea (P0.6) and othe'L ESV
etemen-t6.. The p't-ncipaZ technic~at mi,6aion atea.. a~e.
communation, eteciLomagneZc gui~dance and contbtot,.6u4-
L'eitance. o6 qyround and ae~o.6pace. object;s, AJnteU.Zgence data
cotteetion and handting, in~o'rxaion 6y6en technotogy,
iono-6phe~ic pLoagation, zo~Ud 6 tatte .6cenceA, nicAouave
phy6ic.6 and ete'Lonic 'tetiabi".t, maintainakZ2.tt and
cornpatibitity.

